Update on Anacostia River Comparative Validation of Innovative Capping Technologies

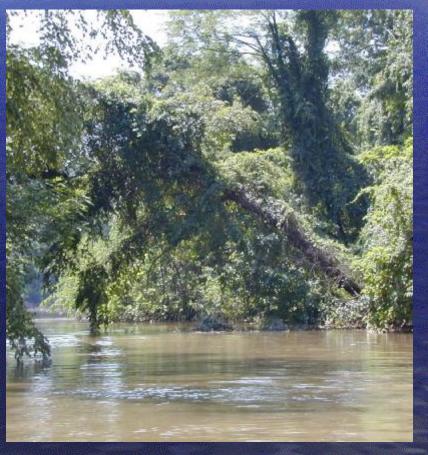
Presented to Remediation Technology Development Forum Seattle, WA

Presented by Danny D. Reible Chevron Professor and Director Hazardous Substance Research Center/South & Southwest Louisiana State University

October 29, 2002

Overall Project Objective

- The comparative effectiveness of traditional and innovative capping methods relative to control areas needs to be demonstrated and validated under realistic, well documented, in-situ, conditions at contaminated sediment sites
 - Better technical understanding of controlling parameters
 - Technical guidance for proper remedy selection and approaches
 - Broader scientific, regulatory and public acceptance of innovative approaches


Overall Project Scope

A grid of capping cells will be established at a well characterized contaminated sediment site:

- Contaminant behavior before capping will be assessed
- Various capping types will be deployed within the grid evaluating placement approaches and implementation effectiveness
- Caps will be monitored for chemical isolation, fate processes and physical stability
- Cap types and controls will be compared for effectiveness at achieving goals

Demonstration Site – Anacostia River

- Anacostia River has documented areas of sediment contamination
- Anacostia Watershed Toxics Alliance (AWTA) offers unique opportunities
- Ultimate rehabilitation approaches uncertain
- Much of current focus on reducing contribution of sources
- Areas adjacent to Navy Yard are good candidate sites based on review of existing data

Proposed Demonstration Area

 The proposed demonstration areas are approximately 200 ft by 500 ft (approximately 2 acres) adjacent the shoreline upstream and downstream of the Navy Yard

 Each proposed pilot study cell is approximately 100 ft by 100 ft in size and two or three study cells per area will be implemented.

Demonstration Sites

Demonstration Sites

First Site – old CSO outfall South end of Navy Yard – PCBs: 6-12 ppm – PAHs: 30 ppm Metals • Cd: 3-6 ppm Pb: 351-409 ppm • Cr: 120-155 ppm Hg: 1.2-1.4 ppm Cu: 127-207 ppm Zn: 512-587 ppm Second site – near old manufactured gas plant North end of Navy Yard PAHs up to 210 ppm

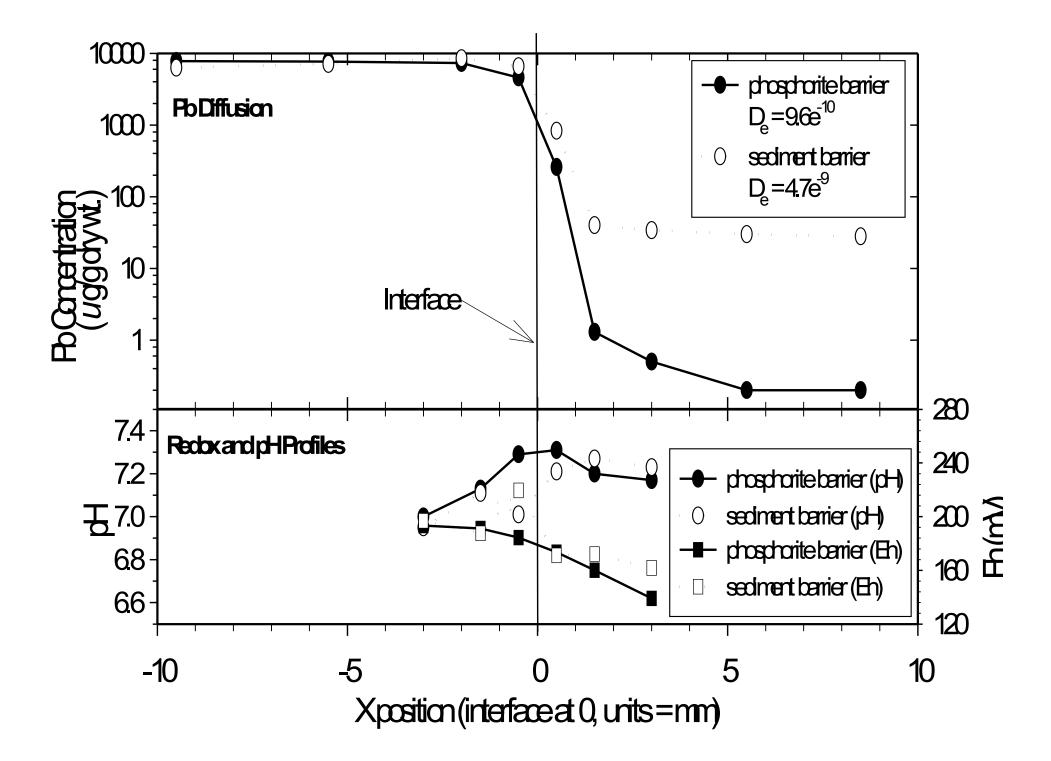
Potential Cap Technologies

- Five technologies undergoing bench scale testing and evaluation
- Bench scale testing objectives
 - Problems with physical placement?
 - Problems with contaminant or nutrient release during placement?
 - Problems with effectiveness with Anacostia contaminants?
 - What is appropriate cap design, homogeneous or layered composite?
 - What are key physical or chemical indicators of performance?

Potential Cap Technologies Anacostia Demonstration

- Aquablok for control of seepage and advective contaminant transport
- Zero-valent iron to encourage dechlorination and metal reduction
- Phosphate mineral (Apatite) to encourage sorption and reaction of metals
- BionSoil to encourage degradation of organic contaminants
- Natural organic sorbent to encourage sorptionrelated retardation (reduction in advective-diffusive transport)

AquaBlokTM


Gravel/rock core covered by clay layer Expands in water decreasing permeability Applicable to seep locations (Site 2) • May be useful as funnel in "funnel and gate" reactive barrier design Semi-commercial technology Treatability evaluation underway Hull & Assoc

Zero-Valent Iron

Fe(0), Fe-S, Pd/Fe(0) under consideration Subject to cathodic reactions that yield hydrogen Hydrogen can drive reductive biotic transformations Reductive dechlorination Metal reduction Directly provide electrons for abiotic reduction Chlorinated Organic Compounds (PCBs) Evaluation underway by Carnegie Mellon University Metals Evaluation underway by Rice University

Apatite Barrier

Apatites $- Ca_5(PO_4)_3OH$ Subject to isomorphic substitution $-Pb_5(PO_4)_3OH$ $- Cd_5(PO_4)_3OH$ Reduces migration of metal species Employing XRF and XAS for metal species dynamics and migration Evaluation underway with LSU/University of New Hampshire

BionSoilTM

Manufactured soil from composting
Hydrogen source

Enhancement of reductive dechlorination
Enhancement of anaerobic degradation of PAHs

High organic content

Encourages sorption and retardation of transport

Evaluation underway at LSU

OrganoClay Sorbent

Candidate - Biomin EC-100 organo-modified clay

- Low permeability
- High organic content
- Encourages retention of both non-aqueous and dissolved constituents
- Evaluated for control of active hydrocarbon seeps in Thea Foss Waterway, WA

Treatability testing underway with Hart-Crowser

Other Potential Cap Materials

Ambersorb commercial sorbent
Coal-based sorbents
Undergoing initial review/feasibility evaluation

Prime Field Contractor

Horne Engineering
Project Lead – YueWei Zhu
Site Characterization Plan (Summer 2002)
Site Characterization (Fall 2002)
Cap Design (Winter 2003)
Cap Placement projected for Spring 2003

Project Plans June-Dec 2002

Develop site characterization workplan
Distribute workplan for review and comment
Initiate site characterization
Reporting of preliminary conclusions on lab treatability studies
Preliminary field construction design
Coordinate with cooperating sources of support

– EPA SITE program (3rd party evaluation)

Site Characterization Objectives

Establish the contamination baseline at demonstration areas

- Define contaminant variability
- Identify and confirm appropriate areas for cap demonstration
- Determine the geotechnical characteristics of the sediment
- Provide necessary baseline data for future evaluation of effectiveness of capping placement and capping technologies

Sampling Approach

A two-staged sampling approach is planned for site characterization:

 Stage 1 sampling will be implemented in 2002 to provide a representative assessment of demonstration site conditions and to provide necessary information to refine the subsequent sediment coring and benthic community sampling.

Stage 2 sampling will be implemented in the spring of 2003 to accommodate the biological parameter sampling such as submerged aquatic vegetation (SAV) and benthic community due to reduced biological activities in the winter season as well as provide opportunity for supplemental sampling to respond to issues raised during Stage 1

Stage 1 Sampling

- Preliminary physical assessment
 - Bathymetry measurement and side scan and sub-bottom profiling
- Surficial sediment sample collection
- Sediment coring sample collection
- Sediment radionuclide characterization
 - Historical deposition
 - Average rate and extent of bioturbation
- Geotechnical data for the cap design
- Historical Data Collection (groundwater seepage, flow velocity, and etc.)

Preliminary Physical Assessment

- Wide-area coverage/rapid assessment surveys of gross topography, sediment texture and depositional history.
- Bathymetry and sidescan profiling for depths and surficial sediment texture
- Sub-bottom profiling.
- Rapid photographic (planview with sediment interface camera) survey in order to map in detail the top 6" of sediment for grain size, benthic habitat type and stability
- Currently negotiating with potential subcontractors

Chemical Sampling

Surficial sediments

 ~40 surficial sediment samples will be collected from each site four (4) inch and up to six (6) inch thick at each grid point using a stainless steel Van Veen grab sampler or Petite Ponar grab sampler.

Core sediments

- 8 cores will be collected from each site to a depth of 3 ft
 Samples collected from 0-6", 6"-12" and 12"-36"
- Additional deeper cores will be used to assess underlying stratigraphy and provide geotechnical information for design
 - One water sample from underlying sand unit
- Additional shallow cores (gravity corer) employed to supplement baseline sampling

Water sampling

To define chemical baseline in water and potential for recontamination of caps

Physical, Chemical, and Biological Parameters

Parameter	Surficial	Core Sediment	Water Column/
	Sediment	Sample	Pore-water
PCBs	Х	Χ	Χ
PAHs	X	X	Χ
8 RCRA Metal & Mercury	X	X	Х
Total Organic Carbon	X	X	
Water Contents	X	X	
Total Kjeldahl Nitrogen	X	X	
pH			Х
Total Suspended Solids			Х
Salinity			Х
DO			Х
Conductivity			Х
Benthic Macroinvertebrate	X		
SAV Survey	X		

Analytical Methods

Analytical Parameter	Aqueous Methodology	Solid Methodology*		
Chemical				
PAHs	SW-846 5030B/8270C	SW-846 8270C		
TCL Pesticides/PCBs	SW-846 5030B/8180A	SW-846 8180A		
PCBs	SW-846 5030B/8082	SW-846 8082		
	7060A/7421/7740/7061/	7060A/7421/7740/7061/		
8 RCRA Metals	7131A/7191	7131A/7191		
Total Suspended Solids-				
(TSS)	EPA 160.2	Not Applicable		
Total Kjeldahl Nitrogen	EPA 351.3	EPA 351 modified		
Phosphorus	EPA 365	EPA 365 modified		
Total Organic Carbon	EPA 415, SW-846 9060	EPA 415 modified		
Biological				
Benthic Macroinvertebrate		EPA/600/4-90/030		
SAV Survey		General Acceptable Method		

Geotechnical Parameters

Parameter	Number of Sample	Method	
Grain Size Distribution	10	ASTM D421/422	
Specific Gravity	4	ASTM D854	
Atterberg Limits	10	ASTM D4318	
Classification	10	ASTM D2487	
In-Situ Vane Shear Test (Shear	20	ASTM D2573	
Test)			
Unconsolidated, Undrained	4	ASTM D 2850	
Strength			
Permeability*	4	ASTM D 2434	
Consolidation**	4	ASTM D2435	
		USACE VIII	
Moisture Content	40	ASTM D2216	
Bearing Capacity	Calculated		
Slope Stability	Calculated		

Note:

* One value of permeability must be calculated from the self-weight consolidation test.

** Use the Modified standard consolidation test and self-weight consolidation test as described in USACE 1987 (Department of Army Laboratory Soils Manual EM 1110-2-1906 - USACE 1970).

Stage 2 Sampling

Benthic community sampling collection
 Submerged aquatic vegetation (SAV) sampling
 Supplemental sampling as identified by Stage 1 sampling

Sampling after cap placement

Approach

- Employ cores and dialysis samplers to define placement and cap effectiveness
 - Bottom of core undisturbed sediment
 - Middle of core cap/sediment interface
 - Examine interlayer mixing
 - Examine contaminant migration/fate processes
 - Top of core cap/water interface
 - Examine recontamination
 - Examine recolonization
- Supplement with physical monitoring
 - Water column (flow, suspended sediment and chemical)
 - Non-invasive (sonar, bathymetry)
 - Invasive (sediment profiling camera)

Summary

- Capping technologies undergoing benchscale evaluation and testing
- Site characterization efforts in final planning stages for field deployment within a month
- Additional site characterization, cap design and implementation slated for next spring
 Additional information www.hsrc-ssw.org