Dialysis sampler evaluation of groundwater-surface water interactions John H. Pardue Louisiana State University Willard Potter and Andrew Jackson de maximis, inc. and Texas Tech U.

Outline

- Tools for assessing groundwater/surface water interface
- Case study: Marvin Jonas Transfer Station, NJ
- Treatment opportunities at the interface
- Case study: 22nd Street Landfill, Aberdeen Proving Ground, Maryland

Groundwater-surface water interface

- VOCs commonly discharge to surface water bodies and wetlands
- Identifying the location and nature of the discharge is a common problem
- Scale of the changes in biogeochemical conditions changes rapidly as the groundwater-surface water interface is approached

Tools for identification of groundwater discharge zones

- Nested piezometers
- Dialysis samplers
- Passive vapor samplers
- Seepage meters
- Thermal imagery

USGS

Marvin Jonas Transfer Station,NJ

- Site adjacent to small creek (Mantua Creek) in Wenonah, NJ
 - Solvent/waste reprocessing facility
 - COCs primarily chlorinated solvents and BTEX
- Natural attenuation remedy pursued
 - Circumstantial evidence that Mantua Creek is discharge point for VOCs. However, all stream grab samples nondetect for VOCs.
 - Direct evidence required to demonstrate that stream is not impacted

MJTS dialysis sampler sampling

- Objective: identify location of groundwater discharge and directly measure porewater concentrations of VOCs
 - 34 samplers utilized at 25' increments along stream
 - Samplers approximately 18" long and inserted until 3 of the dialysis cells were above the sediment-water interface
 - High resolution at the groundwater-sediment interface needed
 - Dynamic sediment environment expected and observed
- Retrieved 2 weeks following insertion and selected cells sampled

1 _____

1 Rigid cover

2

- $2 \ 0.20 \ \mu m$ membrane filter
- 3 Base with wells

Groundwater discharge zone #1

Groundwater discharge zone #2

July 2001- sampled cells Below quantitation

Groundwater discharge zone #3

Regulatory interaction

- "Convincing evidence of biodegradation in plume prior to discharging to creek"
- However, detects of benzene of 3.1 ug/L and 4.9 ug/L in groundwater discharge zones 1 and 2, respectively exceeded NJDEP surface water quality criteria. This creates problem.
- De minimis zone? Need for a ecological risk assessment?

Treatment Opportunities at interface? Constructed wetland approach

- A constructed wetland to treat both chlorinated and non-chlorinated VOCs maximizing biodegradation, minimizing volatilization while operating year-round
- Wetland is constructed as an alternative discharge point for the groundwater plume within the site boundary either passively intercepting the plume or serving as a component of a pump and treat system

Contaminant profiles in mesocosms

22nd Street Landfill- APG

- Landfill for municipal waste and chemical disposal, also UXO issues
- Built directly adjacent to s. Bush River within an existing wetland
 - Few remedial options without directly attacking landfill
 - Treatment wetland concept very familiar at APG
- Motivation: passively treat plume/landfill leachate prior to discharge to Chesapeake Bay

Treatment wetland plan for 22nd Street Landfill

- Assess discharge zone seasonally using dialysis samplers and other approaches
- Construct treatment wetland over discharge zone. Depth of peat material dictated by concentrations in groundwater.
- Passive treatment accomplished by rhizospheric biodegradation, sorption, and other relevant processes