Natural Attenuation of Chlorinated Aliphatics in Wetlands:

Linking Hydrology, Geochemistry, & Microbiology

Michelle M. Lorah
Wetlands: Unique Challenges

- Sensitive ecosystems
- Inaccessibility and permitting
- Large number of fate processes
- Steep biogeochemical gradients
- High spatial variability
- High seasonal variability
- High microbial diversity
WEST BRANCH CANAL CREEK
ABERDEEN PROVING GROUND, MD

Tidal Freshwater Wetland
Phragmites dominated

Nested ¾”
Drive-Point
Piezometers

Floating Walkways
- Hydrogenolysis
- Dehydrochlorination
- Dichloroelimination
Vertical Transformation Using Piezometers

(WB26 May 1999)
Spatial Variability: A vs. C Transect

[Diagram showing spatial variability with labels for Wetland, Canal Creek, Aquifer, and West Branch Canal Creek, with contour lines for total PCA (ppb) and summer 1995.]
Spatial Heterogeneity in Geochemistry

CH4, Peeper Comparison, WB36, 5/01

Total VOCs, Peeper Comparison, WB36, 5/01

Concentration (umol/L)

Depth (cm)
AIS Model DLK-100A Electrochemical Analyzer Rev 3.2

File Name: 081502.660

Copyright (c) 2001, Analytical Instrument Systems, Inc. All Rights Reserved.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Initial Pot</th>
<th>Final Pot</th>
<th>Step Size</th>
<th>Pulse Ht</th>
<th>Range</th>
<th>Filter</th>
<th>Line Sync</th>
<th>Scan Rate</th>
<th>Samp Time</th>
<th>Points</th>
<th>Moving Avrg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Sweep</td>
<td>-0.100V</td>
<td>-1.800V</td>
<td>-0.0017V</td>
<td>n/a</td>
<td>100nA</td>
<td>1ms</td>
<td>OFF</td>
<td>500.00mV/s</td>
<td>3.399E-3s</td>
<td>1000</td>
<td>ON, 19 Points</td>
</tr>
</tbody>
</table>

The graph shows the electrochemical analysis with peaks labeled as Fe3+, HS, and FeS. The current and voltage (V) are plotted against each other.
Microelectrodes

Elect., In Situ

Peeper, Field

Elect., N₂ Bag

Peeper, Field

Elect., N₂ Bag
Seasonal Variability in Geochemistry

Winter vs. Summer

- VOCs highest in summer
- Cyclic change related to changing water levels
- Natural attenuation still efficient throughout year
Iron, March 1999

FERROUS IRON (µM)

- **WB30**
- **Live Control**
- **WB23**

NUMBER OF DAYS

0 5 10 15 20 25 30 35 40 45 50

USGS
Methane, March 1999

- WB23
- Live Control
- WB30

METHANE (µM) vs. NUMBER OF DAYS
Spatial Heterogeneity in Microbes

Microcosm: WB23

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dcl-m<sup>b</sup></td>
<td>dcl-h</td>
</tr>
<tr>
<td>1, 1A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1, 1B</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3, 2A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3, 2B</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9, 4A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9, 4B</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16, 6A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16, 6B</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25, 8A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25, 8B</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30, 9A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30, 9B</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>35, 10A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>35, 10B</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Desulfuromonas strain BB1^a

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>na</td>
</tr>
</tbody>
</table>

Dehalococcoides ethenogenes^a

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>na</td>
<td>+</td>
</tr>
</tbody>
</table>
Seasonal Heterogeneity in Microbes

Dehalococcoides

Desulfuromonas

Seasonal Changes
PCA Removal- WB23 Microcosms

March '99 5°C WB23
July '99 19°C WB23
March '99 19°C WB23
Slower summer microbial degradation related to plant growth?
Spatial Heterogeneity in Microbial Diversity
VOCs in Surface Water at West Branch Canal Creek--FY99

<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Concentration (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/18/99</td>
<td>C-C'</td>
<td>18.5</td>
</tr>
<tr>
<td></td>
<td>C-C'</td>
<td>3.2</td>
</tr>
<tr>
<td>3/5/99</td>
<td>C-C'</td>
<td>4.0</td>
</tr>
<tr>
<td>3/8/99</td>
<td>C-C'</td>
<td>6.4</td>
</tr>
<tr>
<td>3/8/99</td>
<td>A-A'</td>
<td>1.7</td>
</tr>
<tr>
<td>3/16/99</td>
<td>C-C'</td>
<td>6.3</td>
</tr>
<tr>
<td>3/16/99</td>
<td>C-C'</td>
<td>3.1</td>
</tr>
<tr>
<td>3/16/99</td>
<td>C-C'</td>
<td>4.1</td>
</tr>
<tr>
<td>5/27/99</td>
<td>C-C'</td>
<td>6.3</td>
</tr>
<tr>
<td>5/27/99</td>
<td>C-C'</td>
<td>3.1</td>
</tr>
<tr>
<td>5/27/99</td>
<td>C-C'</td>
<td>3.2</td>
</tr>
<tr>
<td>7/23/99</td>
<td>A-A'</td>
<td>3.1</td>
</tr>
<tr>
<td>8/3/99</td>
<td>A-A'</td>
<td>22.1</td>
</tr>
</tbody>
</table>

1122 PCA 112 TCA 12 DCA
PCE TCE 12 DCE
CT CF
Delineate Seeps

• Use aerial and ground TIR imaging surveys to identify seeps

• Evaluate the effectiveness of high-resolution TIR imaging in seep delineation
Thermal Infrared Imaging Study

- Low altitude aerial TIR surveys during low tide by helicopter to identify suspected seeps
- FLIR SCR1000, fixed lens, TIR camera (digital video and still images) in collaboration with ATC
- Ground and boat TIR survey during low tide to confirm locations and scan areas not observable by helicopter
Characterize Seeps

• Use Passive Diffusion Samplers to collect representative samples of shallow ground water
• Co-located surface-water samples

• Analyze for VOCs, methane
Conclusions

• **Think multi-disciplinary**

• **Be creative**

• **Define spatial and seasonal variability**

Hydrology

Chemistry

Microbiology

Vegetation