GSI Can Affect the Bioavailability of Sediment-Associated Contaminants to Benthic Invertebrates

Marc S. Greenberg and G. Allen Burton, Jr.

greenberg.marc@epa.gov allen.burton@wright.edu

UNIVERSITY

Sediment Toxicity Assessment and GW-SW Interactions

GW-SW interactions in relation to sediment toxicity important in ecological risk assessment

GSI issues exist at numerous contaminated sites:

- 75% all RCRA/Superfund w/in 1/2 mile of surface water
- 51% NPL sites with surface water contaminated (most via groundwater transport)
- observed at many sites we have studied

Integrated In Situ Assessment Design

Nyanza - Sudbury River System

Concord, Massachusetts and Weston Managers Designers/Consultants, 1,000 foct grid based on Massachusetts State coordinate system, mainland zone from USGS WRIR 00-4108 0 200 400 600 FEET

Hydrological Measurements - Sudbury River - Nyanza Study

Site	Hydrological Conditions ^a	∆h (cm) Range	VHG (cm/cm) Range
UR-002	Upwelling	0.2 – 0.9	0.004 – 0.060
MP-03A-03	Upwelling	0.2 – 10.3	0.013 – 0.137
MP-003-01 ^b	Mixed Up/Down	-0.2 – 9.70	-0.006 – 0.129
SR-015	Upwelling	0.3 – 0.7	0.007 – 0.013
SR-004	Upwelling	0.4 - 7.0	0.011 - 0.093
RW-008	Upwelling	0.4 - 3.8	0.011 – 0.051
RW-005	Upwelling	0.5 – 1.7	0.009 – 0.053

^aDetermined from manometer readings of two nested mini-piezometers (20, 40, 60 and 80 cm depths)

^bDeep water site

Chemistry - Nyanza Study

- Metals (incl. Ag, As, Cd, Cu, Hg, Ni, Pb, Zn) exceeded WQC in groundwater at all 7 sites and SQGs in sediments at 6 sites
- > VOCs exceeded criteria in the groundwater at 3 sites and in the sediments at 4 sites
- Most exceedances in the Mill Pond and Raceway sites
- Contaminants detected in samples from chamber waters reflected groundwater and sediments

In Situ Exposure Nyanza Study

Maine 1999: Hydraulic Heads

Total Chlorobenzenes in Pore Water

(Greenberg, M.S. et al. Environ. Toxicol. Chem. 21(2):289-297, 2002)

Total Chlorinated Benzene Exposure Levels Within *In Situ* Chambers

In Situ Exposure Maine Chlorobenzene Study

Chironomus tentans

(Greenberg, M.S. et al. Environ. Toxicol. Chem. 21(2):289-297, 2002)

96-h *In Situ* Bioaccumulation *L. variegatus*, Maine Chlorobenzene Study

(Greenberg, M.S. et al. Environ. Toxicol. Chem. 21(2):289-297, 2002)

Conclusions: Field Studies

- Mini-piezometer data provide a unique in situ characterization approach--must document GW-SW conditions
- Data from mini-piezometers improved interpretation of exposure-effects relationships
- Downwelling was shown to reduce exposure in one system

Conclusions: Field Studies

- Upwelling conditions were shown to increase exposure and effects when sediments and groundwater were contaminated
- Integrated approaches are essential in a holistic assessment of sediment toxicity

Bioaccumulation Model

Objectives

- Develop a bioaccumulation model that accurately predicts tissue concentrations for benthic species exposed to contaminated sediments
- Evaluate model by comparing predictions to in situ bioaccumulation at sites containing contaminated sediments

Methods

Laboratory:

- Model compounds: FLU and TF
- Toxicokinetics tests (sediment bioaccumulation; waterborne kinetics)
- Sediment desorption kinetics (Tenax[®]-TA beads)

Model development:

- Parameterized with laboratory and literature data
- Used kinetic rate constants for pore water uptake
- Used desorption data to determine pore water concentrations
- Upwelling and downwelling included by addition of a pore water flow term

Methods

Model validation:

- Bioaccumulation of chlorobenzenes by in situ exposed L. variegatus simulated
- Chlorobenzene parameters obtained from literature
- Simulated steady state concentrations compared to measured tissue residues

Kinetics of waterborne FLU in L. variegatus

$$\frac{\mathrm{d} C_{\mathrm{a}}}{\mathrm{d} t} = k_{\mathrm{u}} C_{\mathrm{w}}^{0} e^{-\lambda t} - k_{\mathrm{e}} C_{\mathrm{a}}$$

Desorption: Lake Huron Sediments

Organism Sector

Sediments & Pore Water Sector

Model output: No pore flow

Model output: Full pore flow

- 1. Body Burden (µmol/g wet wt)
- 2. Sediment Conc. (µmol/g dry wt)
- 3. Pore Water Conc. (µmol/mL)

Model predictions and experimental tissue concentrations: Lake Erie, *L. variegatus*

A) Fluoranthene

B) Trifluralin

Field validation for 1,4-dichlorobenzene

Compound	Site	Measured body burden (µmol/g wet wt)	Predicted body burden (µmol/g wet wt)	Factor	Parameter and value
1,4-DiCB 	5	1.02e-03	1.12e-03	1.09	$\begin{array}{rl} k_{\rm u} = & 0.070 \\ k_{\rm e} = & 0.257 \\ {\rm FR} = & 0.01 \\ {\rm q} = & 0.10 \end{array}$
	18	3.74e-03	5.64e-03	1.51	$\begin{array}{rl} k_{u} = & 0.070 \\ k_{e} = & 0.257 \\ FR = & 0.01 \\ q = & 0.10 \end{array}$
	23	2.31e-04	1.49e-03	6.43	$k_u = 0.070$ $k_e = 0.257$ FR = 0.01 q = 1.00
			2.35e-04	1.02	$k_u = 0.070$ $k_e = 0.257$ FR = 0.00 q = 0.25

Conclusions

- The model adequately reproduced the C_{ss} observed in laboratory sediment exposures
- Predictions of field bioaccumulation data that were
 4 provided a degree of validation of the model
- > Qualitative description of upwelling and downwelling in the model indicated that this term is an important determining factor in bioavailability
- The model simulations suggested that in situ rates of feeding should be measured, as FR is a sensitive parameter.

Future research will be designed to improve characterization of GSI to improve the modeling of the impact of upwelling and downwelling on exposure, effects and bioaccumulation.