Bioavailability Control and In-situ Stabilization of Contaminated Sediments Using Carbon Sorbents

RTDF Sediments Remediation Action Team Meeting Seattle, Washington, October 29-30, 2002

Upal Ghosh

Department of Civil & Environmental Engineering,

Stanford University, Stanford, CA

From Nov 1:

Department of Civil & Environmental Engineering,

University of Maryland Baltimore County, Baltimore, MD

Sediment chemistry and bio-uptake

Traditional view

Sediment chemistry and bio-uptake

Sediment-water partitioning of phenanthrene

$$\mathbf{C}_{\mathrm{s}} = \mathbf{C}_{\mathrm{aq}}$$
 . \mathbf{K}_{oc} . \mathbf{f}_{oc}

Milwaukee Harbor Sediment

Likely sources of PAHs and coal: coking operations, gas manufacturing, harbor coal transport

Landtreatment to reduce PAH concentrations in CDF sediment

Manufactured Gas Operations Utica, NY circa 1935

Sediment sampling at Hunters Point

- PCB hot spot in San Francisco Bay
- Samples collected from intertidal zone in south basin

Light microscopy images of sediment particles (250-1000µm)

Harbor Point, NY

Heavy mineral particles: Light organic particles:

Milwaukee Harbor, WI

Hunters Point, CA

sand (sd), silt, clays coal (co), cenospheres (ce), charcoal (ch), pitch (pi), wood (wd),

Petrography analysis of organic particles

Harbor Point, NY Milwaukee Harbor, WI Hunters Point, CA

Distribution of PCB/PAH in sediments

Three sites show 5-7% wt. lighter density carbonaceous matter (coal/charcoal/wood)

PCBs and PAHs associated with lighter density fraction (60-90%)

Lesson:

Over time PCBs [and PAHs] preferentially accumulate in coal/charcoal/coke where they are strongly bound and less bioavailable

See:

Ghosh et al., 2000, *ES&T*, 34, 1729-1736 Ghosh et al., 2001, *ES&T*, 35, 3468-3475 Talley et al., 2001, *ES&T*, 36, 477-483.

Our experimental strategy:

- PCB/PAH particle-scale measurements
- PCB flux and aqueous equilibration
- Mass transfer of PCB/PAH to sorbent and binding energy
- PCB bio-uptake:
 - Three organisms: amphipod,worm, and clam
 - Two sorbents: coke and regenerated activated carbon
 - Variables: dose, contact time, particle size
- Sorbent type & PCB assimilation efficiency by clams
- Organism survival, growth, reproduction, stress

Link chemistry and bio-uptake

- Hypothesis: The bioavailability of PCBs, PAHs, & DDT, depends on particle type to which they're bound
- Can we change PCB bioavailability?
- New strategy for sediment management by in situ stabilization

Benthic organisms in Hunters Point sediment accumulate PCBs

Sediment-sorbent contact

- Sediment-sorbent contact experiments to assess effect of particle size, dose, and contact time on PCB availability
- Sorbent dose: 2x & 5x TOC
- Sorbent size: 100-250 μm
 & 63-100 μm
- Contact time: 1 month & 6 months

Bioaccumulation studies

Macoma Balthica

- Survival, growth, reproduction, activity
- PCB bioaccumulation

Neanthes arenaceodentata

Leptocheirus plumulosus

PCB Bioaccumulation in Clams

Overall reduction in PCB bioaccumulation after 1 month contact with Ac. Carbon: Macoma: 69% Leptocheirus: 72%

Aqueous equilibrium tests

Measure PCB equilibrium concentrations for untreated and various sorbent-treated sediments:

17 ppt seawater + sodium azide
contact 14 days on bottle roller
flocculate colloids with alum and centrifuge

3.4 wt% activated carbon:86% reduction in aqueous PCBs

Alum-flocculation to remove colloids (Ghosh et al., ES&T 2000)

Controlled particle feeding tests: assimilation efficiency

Depuration beakers

Clam assimilation studies

- •Track ³H-BaP and ¹⁴C-2,2',5,5' PCB through a clam
- •Feed 8 hours
- •Depurate 4 days
- Analyze clam tissue and feces

Assimilation efficiency

Acknowledgements!

- DoD SERDP, Ford Fund, Schlumberger, Gas Technology Institute, US Army Corps of Engineers, US Geological Survey
- Stanford Bio-X Initiative, Stanford Graduate Fellowship Program
- US Army Waterways Experiment Station, Todd Bridges, Rod Milward

University of Maryland Baltimore County

- Founded in 1966
- Newsweek's top 12 Hot College list for 2003

Engineering Research Center, CEE dept.

UMBC main Library