Overview of GW/SW Conceptual Models

A conceptual model for GW, SW, sediment, and organism dynamics*

P. Bruce Duncan, U.S. EPA Region 10

Remedial Technology Development Forum Oct 29-30, 2002 - Seattle, WA

* **BFD – model** Black, Fuentes, Duncan

REMINDER FOR THE WORKSHOP

When in doubt/need to simplify, focus on: ➤ Contaminated GW discharging thru clean sediments ➤ RTDF needs

Discussion Points

- Conceptual Models
- •Hydrodynamic/Hydrogeological Aspects
- Ecological Considerations
- •Biogeochemical aspects
- •Tools and approaches to characterize the zone
- •Tiered approaches for evaluation

Outline of this Presentation

Contrast several conceptual models

Present the logic for an integrative model

Some ideas on value of integrating dynamics

Take Home Messages

Continue to improve our conceptual models
We should enhance our "box" models to include the implied dynamics
Tailor the complexity of the conceptual site models to the site

Example 1:

Region 6 Corrective Action Strategy (CAS)

Using the Conceptual Site Model to Select Performance Standards and Develop Data Quality Objectives in the CAS

Typical Conceptual Site BoxGWModel

These circles and arrows indicate Links between GW, SW, & sediment

RTDF Oct 29-30, 2002 - Seattle, WA

SW

SED

Pathways not considered in the box model GW -> Sediment

Sediment -> GW

Sediment -> SW

Dynamics not considered (double arrows)

e.g., GW<->SW

Approach and Strategy for Performing Ecological Risk Assessments

ORNL document - ES/ER/TM-33/R2 http://www.esd.ornl.gov/programs/ecorisk/tm33r2p.pdf for the U.S. Department of Energy's Oak Ridge Reservation: 1995 Revision

Fig. 6. Transfer of contaminants into and through a groundwater integrator OU.

Example 3:

U.S. Department of Energy Hanford Site

Groundwater/Vadose Zone Integration Project: Science and Technology

Groundwater/River Interface Study: Task Description Robert E. Peterson

Pacific Northwest National Laboratory *National Academy of Sciences Panel Review, June 28-30, 2000*

Groundwater/River Interface

Receptor exposure

GW/SW Dynamics

Hydro/geo Properties

Example 4:

Conceptual model from/for sediment managers

Principles for Managing Contaminated Sediment Risks

SMARM meeting

sediment management annual review meeting

Integrative Conceptual Model

Black - Fuentes - Duncan 2002

R

Dynamic Conceptual Model

Dynamics – stream hydrograph

Dynamics – lake GW discharge/recharge

Dynamics – stream benthic macroinvertebrate movement

Sources

Hydraulic head under lake http://www.uky.edu/WaterResources/SYMP99-GWAT1.HTML

Stream hydrograph http://www.oaa.pdx.edu/CAE/Programs/sti/pratt/images/hydrograph.gif

Flow/sediment relationships http://www.usask.ca/geology/classes/geol243/243notes/243week3b.html

Drift organism density http://142.103.180.19/richardson/abstracts/rowe&richardson.pdf

Discussion Points

- Conceptual Models
- •Hydrodynamic/Hydrogeological Aspects
- Ecological Considerations
- Biogeochemical aspects
- •Tools and approaches to characterize the zone
- •Tiered approaches for evaluation

Key to success is a Team approach: *manager, ecologist, hydrogeologist*