Use of Sediment Quality Goals and Related Tools for the Assessment of Contaminated Sediments

A SETAC-Sponsored Pellston Workshop

Presentation to the RTDF Sediment Task Group Baltimore, MD March 11, 2002

A SETAC-Sponsored Pellston Workshop

A meeting of international experts involved in assessment and management of contaminated sediments focused on:

- Current state of the science on SQGs
- Predictive ability of SQGs for aquatic biota
- Frameworks for assessing sediment contamination
- Use of different assessment tools to evaluate sediment
- Approaches to evaluating large, complex aquatic ecosystems

Why a Pellston Workshop?

Need: Considerable debate among stakeholders about the scientific credibility of several current approaches to evaluating sediments, including attempts to apply SQGs more broadly than may be currently defensible.

Opportunity:

- Growing body of information from ecological assessments, research, monitoring programs, etc.;
- Scientific advances in biology, chemistry, and ecotoxicology related to ecological assessment; and
- Growing demand for guidance.

Workshop Goals:

Identify technical issues and approaches that meet decision-maker needs

Build scientific consensus among the experts

Strengthen environmental understandings among stakeholders

Support regional, national, and international activities

Stimulate research targeted at practical needs

and Data

Workshop Organization

SETAC Board

<u>SETAC Liasons</u> G. Schiefer, R. Parrish, W. Landis

Steering Committee (R.J.Wenning, Chairperson)

WG # 1	WG # 2	WG # 3	WG # 4	WG # 5
G. Batley	C. Ingersoll	W. Berry	B. Adams	W. Birge
R. Stahl	D. Moore	B. Engler	A. Burton	S. Douglas

Work Group Chairpersons						
S. Luoma J	. Word	T. Bridges	A. Green	P. Chapman		

Invited Participants

Five Technical Work Groups

Workshop participants will tackle issues by participation in one of five focus groups:

- **1.** Review of the Science Underpinnings of SQGs
- 2. Use of SQGs to Estimate the Potential for Effects / No Effects to Sediment-Associated Contaminants
- **3.** Role of SQGs in Different Assessment Frameworks
- **4.** Other Assessment Tools for Evaluating Sediment Quality
- 5. Considerations for Addressing Particularly Complex Sediment Systems

<u>Work Group # 1</u>

Review of the Science Underpinnings of SQGs

- 1. What are the strengths and limitations of empiricallyderived SQGs?
- 2. What additional qualifiers of SQGs are required to account for bioavailability?
- **3.** What are the strengths and limitations of SQGs derived from equilibrium partitioning?
- 4. Are there important issues of changing sediment chemistry, organism uptake pathways, feeding strategies and trophic levels?
- 5. Has the scientific basis for the various uses of SQGs been field validated?

<u>Work Group # 2</u>

Use of SQGs to Estimate the Potential for Effects/No Effects to Sediment-Associated Contaminants

- 1. How well do SQGs represent the potential for effects, or no effects, observed in laboratory toxicity tests?
- 2. How well do SQGs represent the potential for effects, or no effects, observed in field studies of benthic communities?
- 3. How well do SQGs represent the potential for effects, or no effects, in organisms as a result of contaminant uptake and / or trophic transfers?

<u>Work Group # 3</u>

Role of SQGs in Different Assessment Frameworks

- 1. What are the required elements and decision points of a sediment assessment framework?
- 2. How can these elements best be assembled in an assessment or weight-of-evidence decision?
- 3. What is the utility of different SQG schemes as part of a weight-of-evidence approach to contaminated sediment assessment and management?
- 4. How can SQGs be used within risk-based frameworks to provide advice at appropriate levels, including screening disposal alternatives, no-action determinations, and clean-up decisions?

<u>Work Group # 4</u>

Other Assessment Tools for Evaluating Sediment Quality

- 1. How can we reduce uncertainties associated with the more conventional assessment methods used to derive many empirical and mechanistic SQGs?
- 2. How can we use our understanding of the methods used to derive SQGs to make them more site-specific?
- 3. Can the accuracy of assessing sediment quality be improved using biologically based thresholds in a weight-of-evidence process?
- 4. What are the uncertainties, deficiencies, strengths, and limitations of biologically based thresholds?

Work Group # 5

Considerations for Addressing Particularly Complex Sediment Systems

- 1. What are the "complex issues" that confound or increase uncertainty in the application of SQGs or other sediment assessment tools? What factors are unique to marine, freshwater, and estuarine systems?
- 2. How do we best address physical, chemical, and habitat heterogeneity in sediment systems? Furthermore, to what extent do multiple sources / stresses, biodiversity, resource use patterns, or differences in temporal and spatial scales affect the precision of SQGs?
- **3.** How should uncertainty in the sediment assessment process be addressed in complex aquatic ecosystems?

What will the Workshop Produce?

Executive Summary Booklet

Technical Book

- Workshop goals and objectives overview
- Summary of Workshop findings
- Consensus position papers from each working group (5)
- Supplemental technical papers
- Selected case studies
- Recommendations