

Anacostia

Public/Private Partnership (AWTA, other)
 Excellent "urban river" example environment
 Predominant governmental PRPs

 DC, MD Counties, Navy, Army, very few private parties

 Progressive, innovative leadership mindset
 Potential prototype for innovative approaches

Demonstration Site

- Two potential study
 areas identified
 adjacent to Navy Yard
 - First site has elevated PCBs and metals [1]
 - Second site is primarily PAHs [2]
 - Some seepage, free phase at depth at first site

Demonstration Site

First Site – old CSO outfall

- South end of Navy Yard
- PCBs: 6-12 ppm
- PAHs: 30 ppm
- Metals
 - Cd: 3-6 ppm
 - Cr: 120-155 ppm
 - Cu: 127-207 ppm

Pb: 351-409 ppm

- Hg: 1.2-1.4 ppm
- Zn: 512-587 ppm
- Second site near old manufactured gas site
 - North end of Navy Yard
 - PAHs up to 210 ppm

RTDF Role/Activities

RTDF primary resource for remedial ideas
 – several meeting presentations, off-line discussions

- TDF active member of AWTA meetings
- Management plan authoring team
- Arranging guest speakers for meetings
- Assembling team to co-author long-term monitoring plan (John Davis, Dow)
- Capping Pilot (Danny Reible, HSRC, RTDF)

Remedial Philosophy - RTDF

- Solution of the second seco
- We have a straight to be understood and addressed if important ongoing sources
- Vatural recovery must play role
- Long-term monitoring required to track recovery resulting from hot spot and watershed improvements

•Remaining slides are Danny's

Comparative Validation of Innovative Capping Technologies "Active Capping"

Participants:

Hazardous Substance Research Center/South and Southwest (HSRC) Anacostia Watershed Toxics Alliance (AWTA) Sediment Remediation Technology Development Forum (RTDF) EPA Site Program

Technical Description

- The comparative effectiveness of traditional and innovative capping methods relative to control areas needs to be demonstrated and validated under realistic, well documented, in-situ, conditions at contaminated sediment sites
 - Better technical understanding of controlling parameters
 - Technical guidance for proper remedy selection and approaches
 - Broader scientific, regulatory and public acceptance of innovative approaches

Leveraged Funding

EPA SITE will provide analytical support for validation of capping technologies, reporting

- Anacostia Clean-up Congressional Appropriation (\$2.25MM Part 1) is anticipated to provide funding for engineering design and placement of the caps, expansion of scope of project
- Seeking additional support for federal participation
 - USACE ERDC (Mike Palermo)
 - Navy SPARWARS (Bart Chadwick)

Sampling Design

A grid of capping cells will be established at a well characterized contaminated sediment site

- Contaminant behavior before capping will be assessed
- Various capping types will be deployed within the grid evaluating placement approaches and implementation effectiveness
- Caps will be monitored for chemical isolation, fate processes and physical stability
- Cap types and controls will be compared for effectiveness at achieving goals

Focus: validate the effectiveness of placement and chemical isolation/fate as well as physical stability after placement

Core Cap Technologies

Technologies under Consideration (Incomplete)

- Aquablok for control of seepage
- Zero-valent iron to encourage dechlorination and metal reduction
- Phosphate mineral (Apatite) to encourage sorption and reaction of metals
- BionSoil to encourage degradation and reducing conditions
- Natural organic sorbent to encourage sorption-related retardation

Project Planning and Timing

を 1H 2002

- Receipt of Phase 1 funds \$2.25 MM
- Define tentative technologies for demonstration
- Negotiate and process laboratory testing subcontracts
- Initiate laboratory "treatability" tests
 - Demonstrate that proposed technologies have positive affects and limited negative impacts under water and sediment conditions of the Anacostia
 - Plan for studies to be parallel with field work to identify metrics for evaluation of field effectiveness and improve process understanding
- Negotiate and process prime field contracting agreement

Project Planning and Timing

を 2H 2002

- Develop site characterization plan
- Initiate field contractor subcontracting
- Initiate site characterization
- Reporting of preliminary conclusions on lab treatability studies
- Preliminary field construction design
- Seek Phase 2 Funding

Project Planning and Timing

を 1H 2003

- Final field construction design
- Field construction
- Evaluation of placement effectiveness
- を 2H 2003
 - Initiate cap effectiveness evaluation
 - Reporting on laboratory treatability testing
- を 2H 2005
 - Project completion