Spatial and Temporal Trends in Groundwater Chemistry and Precipitate Formation at the Elizabeth City Permeable Reactive Barrier

Richard Wilkin, Robert Puls, Cindy Paul, Mary McNeil, Frank Beck, and Pat Clark

U.S. EPA, Office of Research and Development, National Risk Management Research Laboratory, Ada, OK 74820
Long-Term Performance Monitoring of Zero-valent Iron PRBs

- U.S. Coast Guard Support Center, Elizabeth City, NC
 (June 96; Peerless iron, Continuous Wall; Cr+VOCs)
- Denver Federal Center, Lakewood, CO
 (Nov 96; Peerless iron, Funnel-and-Gate; VOCs)

Evaluate:
- Contaminant behavior
- Groundwater geochemistry
- Mineral precipitates
- Microbial community characterization
- Hydraulic performance
Performance Summary

• Consistent degradation of contaminants over 6+ y

• Cr completely removed, never above MCL in any downgradient sampling points

• The PRB has achieved containment of chrome plating shop plume (source area now being addressed)

• Organic compounds removed to less than MCL in most sampling points most of the time

• Multiple sources of chlorinated organic compounds at the site
Soil core sampling

Groundwater sampling
Total Dissolved Solids
TDS, mg/L

Moffett Field (820)
Lowry AFB (2900)
Elizabeth City (250-350)
Denver Fed Ctr (900-1200)
Y-12 (470-3225)
Monticello (1300)

Data source: Tri-Agency PRB Initiative, Combined report
Elizabeth City – Spec. Cond.

Zero-valent iron zone

Depth, m

Distance, m

(µS/cm)

[transect 2]
Anionic composition

- Sulfate
- Iron sulfides; Sulfate GR
- Calcite/aragonite; Carbonate GR; Iron hydroxy carbonate

Diagram:
- Chloride
- Bicarbonate
- DFC
- E. City
Sulfate

[transect 2]
Core Analysis Methods

Tools

- SEM-EDS
- Reflected-light microscopy
- Transmission Electron microscopy (TEM)
- XPS (x-ray photoelectron spectroscopy)
- XRD (x-ray diffraction)
- Inorganic carbon analysis/Sulfur analysis/δ^{34}S
- Microbial assays
Inorganic Carbon Analysis

N\textsubscript{2} gas flow 5\% perchloric acid 5\% silver nitrate

Heated

CO\textsubscript{2} gas

Carbon Coulometer

Acid-volatile carbon (calcite, aragonite, siderite, GR CO\textsubscript{3}, rhodochrosite, magnesite)

Peerless Iron (unreacted)
15 ppm AVC
Sulfur Analysis

Combustion
- (sulfate S, elemental S, sulfide S)
- **Peerless Iron (unreacted)**
 - 5 ppm S

Sequential Extraction
- (AVS=FeS; CRS=FeS2)
Mineral/Biomass Accumulation – E. City

Sulfur

Inorganic Carbon

PLFA

Flow

Aquifer

Iron

Aquifer

Depth, m

2680 ppm

Position, m

2614 pmoles/g

Depth, m

4816 ppm

Position, m
Impact of Mineral and Biomass Accumulation: Hydrology and Contaminant Residence Time

\[\rho_e \downarrow, K \downarrow, \text{Gradient} \uparrow \]
Seepage velocity \(\downarrow \)

PRB

Zone of increased buildup, increased \(\tau \)

Decreased \(\tau \)
Elizabeth City – pH

[transect 2]
Total S vs AVS

Acid-volatile Sulfide, mg/kg vs Total Sulfur, mg/kg

- Denver Federal Center
- Elizabeth City
X-Ray Diffraction

FeS weak
Aragonite weak
Magnetite strong
Siderite absent
Fe-OH-CO3 strong
GRCO3 present
SEM/TEM

Furukawa and Wilkin (2002) ES&T, in press
Inorganic C with time

Inorganic C, mg/kg

Distance, cm

aquifer

iron

- 2001
- 2000
- 1999
- 1998a
- 1998b
Mass Accumulation – E. City

- Inorganic Carbon: 8 kg/y (19 ppm)
- Sulfur: 32 kg/y (77 ppm)

Integrated accumulation
4600 cm x 530 cm x 60 cm

Accumulation, kg

Time

- 1996
- 1997
- 1998
- 1999
- 2000
- 2001
- 2002

Graph showing the accumulation over time with linear trends for Inorganic Carbon and Sulfur.
Porosity loss – Elizabeth City
Assume all ppt in front 10 cm, initial porosity = 50%
Porosity loss - DFC

Assume all ppt in front 10 cm, initial porosity = 50%
Pore loss estimations

- Flow rate (flux in)
- Sulfate concentration/removal efficiency
- Bicarbonate concentration/removal efficiency
- Initial PRB porosity
- Iron corrosion (pore volume gain), oxidation (loss)
- Mineral molar volumes
Microbial Biomass – PLFA Dist.

From Gavaskar et al., 2002
Long-term performance: Overview

• Consistent degradation of contaminants over 6 y

• Spatial heterogeneity of mineral and biomass accumulation

• Buildup correlated to GW chemistry (TDS) and flow rate

• Fe0 is long-term sink for C, S, Ca, Si, N, Mg, +/- Mn (mass balance on C & S)

• Porosity loss rate from 1 to 4% per y of original available V
Long-term performance: Overview - cont

- Reactive transport codes – data gaps
- Vertically resolved hydro/geochem data needed during site characterization
- Correlation between declining performance and changing geochemical parameters not evident after 6 y