In Situ Removal of Heavy Metal Contaminants Using Emulsified Nano- Or Microscale Metal Particles

Kristen M. Milum¹, Cherie L. Geiger¹, Christian A. Clausen¹, Robert DeVor¹, Jacqueline Quinn²

¹Department of Chemistry, UCF ²NASA, Kennedy Space Center

Outline

Heavy Metal Contamination
Current Remediation Technologies
Emulsified Zero Valent Metal
Laboratory Studies
Summary and Future Efforts

Heavy Metal Contamination

Coastal/Estuarine sediments: 15-50 mg/kg

Areas near waste outfalls: may exceed 400 mg/kg

 Lakes in Sudbury Mining District, Canada – 250-350 mg/kg in top 10 cm in cores – 50 mg/kg below 15 cm in cores

Current Remediation Technologies

- In situ technology
 - Biological treatment
 - Chemical treatment
- Ex situ technology
 - Treatment of dredged sediments
 - Thermal treatment
 - Stabilization/ Immobilization
 - Extraction technologies
 - Biological treatment

Zero Valent Iron Technology

 Material for permeable reactive barriers
 Used to treat chlorinated organics, nitroaromatics, and heavy metals

 $Fe^{2+} + 2e^{-} \rightarrow Fe^{0}$ $E_{0} = -0.447$

- CrO₄²⁻ reduced to Cr³⁺ with subsequent precipitation as Cr(OH)₃ or Cr_xFe_{1-x}(OH)₃
- Reduce Cu²⁺, Ag⁺, and Hg⁺ to zero valent forms
- Reduce TcO₄⁻, UO₂²⁺, MoO₄⁻ to more immobile forms

Emulsion Liquid Membranes

- Liquid membrane system where two mutually miscible phases are separated by an immiscible phase
- Applications for a wide variety of materials
- Facilitation mechanisms also used to enhance removal
 - Type I: reaction on interior of droplet
 - Type II: use of carrier molecules
 - Crown ethers, carboxylic acids, quaternary ammine salts

Patterson, J. W., R. Passino, et al. Metals speciation, separation, and recovery, 1987.

Emulsified Zero Valent Metal

Combination of ELM and zero-valent metal

- Use of iron or magnesium to reduce heavy metal contamination
- Emulsion droplet provides protective barrier
- Emulsion droplet
 - Organic phase (oil, d-limonene)
 - Water
 - Surfactant (Span 85)
 - Nano- or Microscale metal

Emulsion Droplets

Magnesium

Nanoscale Iron

Microscale Iron

Demonstration of EZVI

- Field test at Cape Canaveral Air Force Station, Launch Complex 34, interior of ESB
- Emulsion system can degrade DNAPL TCE in both water and soil matrices
- Results of field study show in-situ dehalogenation of DNAPL where emulsion is injected
 - 58% reduction with kriging analysis (80% confidence interval)
 - 86% reduction for total TCE; 84% reduction for TCE DNAPL using contouring software EarthVision[®] (80% confidence interval)

Experimental Objectives

- To demonstrate the removal of metal ions
 - From solution
 - From soil

To verify the transport of the metal ions into the interior of the emulsion droplet

Metal Removal from Solution

Vial Study

- Variable weight neat <10 μ m Fe, 1-3 μ m Mg
- 20 mL of 500 ppm Pb solution
- Solution analyzed after 2 days by FAAS

Metal Removal from Solution

Vial study

- 5 g emulsion
- 10 mL, 100 ppm metal solution

Solution analyzed after 5 days – Flame atomic absorption spectroscopy

Metal Removal from Solution

Matrix Effects on Removal Efficiency

5 g emulsion

- Modification of lead solution, 100 ppm Pb & 10 mM organic
 - 2-Mercapto-1methylimidazole
 - Sodium citrate
 - Succinic acid
 - Adipic acid
 - Disodium EDTA

Lead in Organic Phase

Vial study

- 10 mL corn oil or d-limonene
- 10 mL, 10 ppm lead solution
- Additional studies
 - Surfactant in oil/d-limonene
 - EDTA in oil

All vials showed no lead removal from water by organic phase alone

Plating Study

- Metal recovered from emulsion
 - Acidified
 - Analyzed by FAAS
- Fe-oil emulsion
 - 40-60% Pb recovered
- Mg-oil emulsion
 - 45-65% Pb recovered
- Mg-limonene emulsion
 - 60-75% Pb recovered
- XPS confirmed presence of Pb

SEM of recovered iron

Possible Transport Mechanisms

Channel formation with amphiphilic molecules

K. R. Lange, *Surfactants*, 1999 *J. Chem. Phys.*, 1996, 105(18), 8282-8292

Metal Removal from Soil

- Vial study

 20 g lead-spiked soil
 100 mg Pb/kg soil
 3 mL of iron emulsion
 5 mL water beyond incipient wetness
- Analyzed using a variation of EPA Method 3050b

Metal Removal from Soil

Larger Scale Emulsion Recovery

Summary

Demonstrated removal of metal ions from a variety of different solutions

Presence of lead on iron recovered from the interior of the emulsion droplets

Capability of emulsion for the removal of metal ions from soil

Current and Future Efforts

- Investigation into the fate of the metal in the interior of the emulsion droplet
- Simulation of more complex environments
- Small-scale field test to demonstrate applicability of this technique

Acknowledgements

NASA,
 Kennedy Space Center

Dr. Julia Fulghum,
 University of New Mexico