Assessing Source Zone Natural Attenuation and Source Zone Longevity

Paul Johnson¹, Paul Lundegard², Zhuang Liu¹, Roberta Lenski³, Paul Dahlen⁴

¹-ASU, ²-Unocal/Independent , ³-ASU/Carollo , ⁴-ASU/AFCEE , ⁴-ASU/soon-to-be-Golder

This work was sponsored by Rio Tinto (Thanks to Stuart Rhodes!) and the company formerly known as Unocal (now Chevron)

Outline

- Motivation & Sample Sites
- •Questions of Interest & Challenges...
- •SZNA Assessment Approach
 - ✓ Group I, II, and II Data collection
- •Sample Data and Analyses for Group I and II
- •Bench-Scale Accelerated Weathering Tests
- •In Progress...

EXPLANATION: —— Roads and Welpads

> 85 - 40 Feet 40 - 45 Feet 45 - 50 Feet

> > - 55 Feet
> > - 60 Feet
> > - 65 Feet

75 Feet

75 - 80 Feat 80 - 85 Feat 85 - 90 Feat 90 - 95 Feat 95 - 100 Feat 100 - 105 Feat

> 105 - 110 Feet 110 - 115 Feet 115 - 120 Feet 120 - 125 Feet 125 - 130 Feet

35 - 140 Eeel

Non Detect Boundary

Soil Plume

Value

The Ira A. Fulton School of Engineering

New Zealand Aluminium Smelters Site

Photo source: Rio Tinto website, <u>http://www.riotinto.com/default.aspx;</u> Turlough F. Guerin and Stuart Rhodes, 2000. Natural bioremediation of NZAS diesel spill – Draft. Rio Tinto Technical Report

Former Williams AFB ST-12 Site

[650,000 - 1,400,000 gal of aviation fuels (JP-4 and AVGAS)]

Relevant Questions...

- Is SZNA occurring?
- What are the rates of SZNA of key chemicals and cumulative mass?
- What are the implications for longterm groundwater quality?
- Are the SZNA processes sustainable?
- At what point in the future will groundwater quality goals be met?

Generalized Conceptual Model

A Simplified View of SZNA Processes...

SZNA Framework...

A data-driven/multiple lines of evidence approach is used. Any projections are ^s anchored in data.

Data gathering and data reduction activities are grouped by their usage.

- **Group 1:** Measurements that indicate that natural attenuation has been, or is currently occurring in the source zone
- **Group 2:** Measurements that help assess the current rate(s) at which source zone natural attenuation is occurring and the sustainability of the processes
- **Group 3:** Measurements that are indicative of long-term effects of source natural attenuation processes on the future extent, duration, and magnitude of impacts associated with the source

The Ira A. Fulton School of Engineering

The Ira A. Fulton School of Engineering

SZNA Group III (future projections)

(in addition to Groups I and II)

Modeling...

The Ira A. Fulton School of Engineering

Data Reduction...

- **Group 1:** Typically charts and tables showing that measurements (dissolved concentrations, soil gas concentrations, composition of residuals, spatial relationships) are consistent with what is expected if SZNA is occurring.
- **Group 2**: Mass balance and simple order-ofmagnitude mass transport calculations
- **Group 3:** Time-scale conversions

Η

LNAPL

L

W

Source Zones at GRP

The Ira A. Fulton School of Engineering

Sample Group I Data from GRP... (SZNA occurrence)

		Oxygen (mg/L)	Alkalinity (mg/L CaCO3)	Iron (mg/L)	Nitrate (mg/L)	Sulfate (mg/L)	Methane (mg/L)	
	Conventional Monitoring Wells Up-gradient of Source Areas							
	Data Points	341	194	54	194	194	0	
	Median	3.7	180	0.04	18.2	30		
	Mınımum	0.04	56	0.02	2.2	11		
	Maximum	m 11.0 400		0.83	93	220		
Conventional Monitoring Wells Down-gradient of Source Areas								
	Data Points	255	158	35	158	158	0	
	Median	0.3	325	16	2.2	9.2		
	Minimum	0.01	48	3.6	0.4	1		
	Maximum	5.8	690	45	14	160		
Nested Wells Up-gradient of DT Source Area								
	Data Points	5	5	5	5 6.1 1.9	5 44	5	
	Median	2.4	197	0.19			0.003	
	Minimum	0.8	172	0.06		23	0.001	
	Maximum 6.7		245	3.32	40	76	0.014	
	Nested Wells Within and Down-gradient of DT Source Area							
	Data Points	Data Points 23		26		26	26	
	Median	1.2	476	14.7	1.9	9	6.7	
	Minimum	m 0.5 280		0.13 1.5		0.7	0.130	
	Maximum	5.2	608	78	6.5	106	13.3	

Not shown - dissolved TPH data, groundwater elevations, chromatographic comparisons of residual TPH, etc.

Group II Data Reduction...

(use of macroscopic mass balances with field data)

Sample Group II Data Reduction -Dissolved-Transport-Related Processes..

Plan View

Cross-section A-A' (w/exaggerated vertical scale)

$$\begin{aligned} R_{bio-sat} &= \iint_{WH} q_u \{ [S_O C_{O,u}] + [S_N C_{N,u}] + [S_S C_{S,u}] - [S_I C_{I,u}] - [S_{Mn} C_{Mn,u}] - [S_M C_{M,u}] \} dzdy \\ &+ \iint_{WL} q_R \{ [S_O C_{O,R}] + [S_N C_{N,R}] + [S_S C_{S,R}] - [S_I C_{I,R}] - [S_{Mn} C_{Mn,R}] - [S_M C_{M,R}] \} dxdy \\ &- \iint_{WH} q_d \{ [S_O C_{O,d}] + [S_N C_{N,d}] + [S_S C_{S,d}] - [S_I C_{I,d}] - [S_{Mn} C_{Mn,d}] - [S_M C_{M,d}] \} dzdy \end{aligned}$$

Sample Group II Data Reduction -Vapor-Transport-Related Processes..

The Ira A. Fulton School of Engineering

GRP Group II Data Reduction...

Source Area	Area (m ²)	Average Depth	Average	Aerobic	
		(m)	Deff,O ₂	Degradation Rate	
			(cm^2/sec)	(kg/year)	
Diluent Tanks	231212	18.9	0.038	1.36 X 10 ⁵	
Compressor Plant	71502	32.0	0.025	1.64 X 10 ⁴	
G6	9755	24.8	0.065	7.5×10^3	

Source Area	Loss Rate Estimate	Loss Rate Estimate	Loss Rate Estimate	
	Due to Dissolution	Due to Dissolved-	Due to Oxygen Gas	
		Phase Transport-	Transport	
	[kg/y]	Related	[kg/y]	
		Biodegradation		
		[kg/y]		
Diluent Tanks	500 - 1600	600 - 1600	140,000	
Compressor Plant	300 - 500	0	16,000	

- Gas transport-related losses are more significant than dissolved-phase transport related processes, but...
- SZNA rates are quite different in submerged vs. exposed source zone regions...

The Ira A. Fulton School of Engineering

NZAS Group II Data Reduction...

Estimated to be about 30,000 L/y from Group II data in 1991 and 12000 L/y in 2000 - vapor transport related processes are dominant at this site

The Ira A. Fulton School of Engineering

Sample Group III Data - NZAS...

The Ira A. Fulton School of Engineering

Group III: Accelerated Bench-Scale Weathering Experiments...

- Assess the effects of long-term (years/decades/longer) SZNA from the results of carefully designed and scaled "bench-scale accelerated weathering tests" that are conducted over the period of days to months...
 - •Accelerated bench-scale dissolution tests
 - •Accelerated bench-scale biodegradation tests
 - •Accelerated bench-scale volatilization tests

Accelerated Bench-Scale Dissolution Weathering Test

Experiment (batch dissolution w/out introducing headspace)

Field-Scale (simplification)

Accelerated Dissolution Experiment: Sample Results for Fuel from WAFB (TPH Results)

	Volume of	TPH	Field scale estimate ^b			Volume of	TPH	Field scale	e estimate ^b
	water	concentration ^a	[years]			water	concentration ^a	[ye	ars]
Flush #	[mL]	[mg/L]	low	high	Flush #	[mL]	[mg/L]	low	high
1	380	9.8	6.1	35	21	380		130	730
2	380	9.0	12.1	69	22	380		130	760
3	380		18.2	100	23	380		140	800
4	380		24.2	140	24	380		150	830
5	380		30.3	170	25	380		150	870
6	380		36	210	26	380		160	900
7	380		42	240	27	380		160	930
8	380		48	280	28	380		170	1000
9	380		55	310	29	380		180	1000
10	380	7.1	61	350	30	380	5.5	180	1000
11	380		67	380	31	380		190	1100
12	380		73	420	32	380		190	1100
13	380		79	450	33	380		200	1100
14	380		85	480	34	380		210	1200
15	380		91	520	35	380		210	1200
16	380		97	550	36	380		220	1200
17	380		100	590	37	380		220	1300
18	380		110	620	38	380		230	1300
19	380		120	660	39	380		240	1300
20	380	8.7	120	690	40	380	3.6	240	1400
				41	380		250	1400	

^a TPH analysis performed by GC/FID

^b Low estimate calculated using q = 0.023 m/d, source volume = 1,400,000 gal

High estimate calculated using q = 0.061 m/d, source volume = 650,000 gal

Accelerated Dissolution Experiment: Sample Results for Fuel from WAFB

Accelerated Dissolution Experiment: Sample Results for Fuel from WAFB

DLC3

Accelerated Bench-Scale Biodegradation Weathering Test

monitor respiration -> estimate loss -> conduct periodic leach tests at different treatment levels -> sacrifice columns for soils analyses

The Ira A. Fulton School of Engineering

Diesel Results

3100 mg-TPH/kg-soil2.2 mg-TPH/L-leachate21 ug/L Benzene76 ug/L Napthalene

570 mg-TPH/kg-soil 2.8 mg-TPH/L-leachate

240 mg-TPH/kg-soil 2.3 mg-TPH/L-leachate <0.1 ug/L Benzene <0.1 ug/L Napthalene

Accelerated Bench-Scale Volatilization Weathering Test

Accelerated Bench-Scale Volatilization Weathering Test (diluent and diesel)

Summary/In-Progress

- Data-driven framework for SZNA proposed and illustrated; data needs matched with key questions to be answered
- For exposed source regions major contributor to loss is likely to be gas transport (working in combination with biodegradation for petroleum hydrocarbons)
- For submerged regions dissolution and biodegradation may be comparable in many cases
- Accelerated bench-scale tests yield insight to future conditions and long-term behavior especially for complex mixtures
- Fate/transport predictions using "representative compounds" as recommended in TPCWG documents would not match the data collected in this work.
- Sustainability of SZNA (in progress...)

References

- Liu, Z. 2004. A Study of Accelerated Bench-Scale Weathering Experiments. Ph.D. Dissertation. ASU.
- Lenski, R.. Assessment of Source Zone Longevity at the Former Williams Air Force Base, Arizona. Masters Thesis. ASU.
- Johnson, P., P. Lundegard, Z. Liu. 2005. Source Zone Natural Attenuation at Petroleum Hydrocarbon Spill Sites - I: Site-Specific Assessment Approach. In Review.
- Lundegard, P., P. Johnson, Z. Liu. 2005. Source Zone Natural Attenuation at Petroleum Hydrocarbon Spill Sites - II: Application to a Former Oil Production Field. In Review.
- Guerin, T. F. and S. Rhodes. 2000. Natural Bioremediation of NZAS Diesel Spill. Rio Tinto Technical Services Technical Report.

QUESTIONS?