

Hanford Site

Water and Energy Balance in an ET Cover with a Protective Side Slope Using the STOMP Simulator

AL Ward, MD White and EJ Freeman

March 9-10, 2004

Background

- Surface barriers are needed for closure at most DOE sites
- At Hanford alone, over 1600 liquid and solid waste sites, including 12 tank farms
- Some 200 barriers covering ≅ 1000 acres required for waste site closure
- Barrier development is of the top four Science &Technology challenges to site clean-up

Pacific Northwest National Laboratory U.S. Department of Energy 2

Challenges to Barrier Deployment

- Multidimensional design problem
 - raised sloped surfaces
 - minimize footprint; underflow
- Protective side slopes
 - no design standard
- Important components of fieldscale transport
 - subsurface heterogeneity
 - strong anisotropy
 - reactive transport (radiological and hazardous wastes)
- Limitations in design tools
 - not all are physically based
 - semi-empirical climate coupling
 - mass and energy not coupled
 - not suited to sparse canopies typical of arid environments

Objective

- Develop a tool to support design and performance evaluation of candidate barriers for the Hanford Site
- STOMP already includes many of the features needed of a barrier design tool
- Routinely used to predict soil water dynamics
 - Multidimensional
 - nonisothermal
 - Multiphase
 - unsaturated
- develop a module for soilplant-atmosphere dynamics

Model Structure

- Single-plant-temperature boundary
- Multiple-plant-temperature boundary
- 5 coupled conservation equations
 - water mass at the ground surface
 - thermal energy at the ground surface
 - thermal energy at the plant leaves
 - water mass at the canopy height
 - thermal energy at canopy height
- Primary unknowns
 - aqueous pressure (soil surface)
 - temperature (soil surface)
 - plant leaf temperature
 - water-vapor partial pressure
 - temperature at the canopy height

Potential Evapotranspiration

- Priestly-Taylor model best for ample soil water and minimal advection
- Penman-Monteith model best for full canopy ground coverage
- For sparse canopies, typical of arid ecosystems, Shuttleworth-Wallace [1985] is best
 - Single species transpiration and soil evaporation model extended to multiple species in multiple dimensions

Soil Evaporation

- The evaporative depth is determined implicitly for each time step
- A departure from specification of evaporative depth
 - Eliminates arbitrary definition
 - Cannot vary evaporative depth to dictate barrier performance
- Required modifications of θ(ψ) and K(ψ) for dry conditions

Crop Coefficient

- Used to scale ET₀ to ET_a, for the plant species of interest
- For K_c < 1, plant uses less water than ET₀; when K_c
 1, plant uses more water
- Defined using 5 points in development stage
- Linear interpolation between points
- Allows values to vary over life of barrier

Time of Growing Season

Root Water Uptake

- root water uptake, S, based on Vrugt [2001] model
- Modified to handle multilayered soils in which root length density do not decrease exponentially with depth
- Water uptake, S, depends on ψ, max root lengths (x_m, y_m, z_m), and T₀,

Side-slope Hydrologic Performance

Allows for simulation with a bare or vegetated surface
Time-dependent plant density
Solving for aqueous and gas phase flows

wind pumping in side slope
advective drying
Reduced recharge

Model Calibration

Several parameters and variables

- Field data
- Literature values
- Estimated
- Calibration can be a complex task
 - several forward runs while changing parameters in search for the best output
- Iterative procedure facilitated with UCODE

Example Simulation Prototype ET Cover over Existing Crib

Simulated Water Content in ET Cover Jan - Oct 1995 (Daily Output)

Water Storage

Summary

- Barrier design is a multidimensional problem
- Performance controlled by coupled processes
- Available tools for barrier design not always applicable
- STOMP used extensively at DOE sites for subsurface flow and Transport
- Soil-Plant-Atmosphere module added
 - physically based
 - full climate coupling
 - fully coupled mass and energy
 - Well suited to sparse canopies typical of arid environments

Interactive Processes Governing Performance

