- HydroTechnics™ sensors provide information on groundwater flow velocity and direction based on propagation of induced thermal gradients
- Sensors are installed directly into a boring and output data continuously to a datalogger for up to 2 years



- A heating element within the probe heats the the groundwater inside the probe to 20-30°C above background
- The temperature distribution at the surface of the probe provides a 3-D interpretation of groundwater advection following computer processing of the data



- Data can be collected manually or remotely using a dialup connection
- Datalogger can store up to several months of output.









## HydroTechnics™ Power Settings

| Dover AFB Funnel & Gate |          |           |          |           |  |  |
|-------------------------|----------|-----------|----------|-----------|--|--|
| Probe ID                | R (ohms) | V (volts) | I (amps) | P (Watts) |  |  |
| A1                      | 38.4     | 50        | 1.30     | 65.1      |  |  |
| A2                      | 40.0     | 50        | 1.25     | 62.5      |  |  |
| G1                      | 39.6     | 30        | 0.76     | 22.7      |  |  |
| G2                      | 40.5     | 30        | 0.74     | 22.2      |  |  |

| Lowry Campus Funnel & Gate |          |           |          |           |  |  |
|----------------------------|----------|-----------|----------|-----------|--|--|
| Probe ID                   | R (ohms) | V (volts) | I (amps) | P (Watts) |  |  |
| HT0080                     | 43       | 50        | 1.16     | 58.1      |  |  |
| HT0081                     | 44       | 50        | 1.14     | 56.8      |  |  |

### Calibration and Post-Processing HydroTechnics™ Sensor Data

- Run one 8-hr test where probe response is monitored as temperature ramps up; HT processes and returns calibration files
- Restart power to sensors and datalogger, then begin acquiring signal
- Download datalogger (before loop ends)
- Run PC-based programs to convert temperature data into velocity vectors
- Dump data into spreadsheets for storage and developing graphical representations.

### HydroTechnics™ Results – Dover AFB

- After an initial stabilization period, the average velocity was ~0.02-0.03 ft/day
- Sensors in the two Fe gates responded rapidly to precipitation events



### HydroTechnics™ Results – Dover AFB

- After stabilization, the flow direction was directly through the gate
- Precipitation events briefly affected flow direction, and sometimes led to momentary reversals



#### Water Level Measurements – Dover AFB



Water level maps provide evidence for asymmetric flow through both gates



### HydroTechnics™ Measurements



# Velocity Measurements with a Colloidal Borescope





Schematic of the Colloidal Borescope in-situ.

Photo of the borescope.

### Use of Colloidal Borescope at Lowry AFB

- Portable instrument
- Needs 2-inch-diameter completed wells
- Tracks movement of colloids in the well bore
- One instrument can be used in several wells
- Works only when flow is stable



# Real-Time Acquisition of Colloidal Borescope Data





### Colloidal Borescope Data – Lowry AFB



### Comparison of Results – Lowry AFB

Asymmetric
Capture Zone
Caused by
Stream
Flowing on
East Side





# Comparison of HydroTechnics™ and Borescope Results – Dover AFB



### Evaluation of HydroTechnics™ Sensor Performance

- Continuous data recording over many months
- Able to record effects of rainfall events, seasonal and annual groundwater fluctuations
- HydroTechnics™ sensor measures very localized flow
- Provides velocity and direction for a single point in space, but also get temporal data
- Performance inside ZVI barrier not fully explored; e.g., did not try to optimize power input to sensor

#### Evaluation of Colloidal Borescope Sensor Performance

- Colloidal borescope measures particle movement along preferential flow paths
- Results biased toward high conductivity zones
- Works only when flow is stable
- Data collected over period of one day (so it's better not to use probe during atypical conditions)
- Are borescope measurements representative of overall flow conditions? Results are uncertain.

#### Potential Flow Problems at PRB Sites

The plume could pass over, under, or around the PRB



Flux may be non-uniform, thereby creating variable velocity conditions and shifting hydraulic gradient directions



Residence time is a function of particle velocity

### Implications for Designing a PRB

- There is a tradeoff between safety factors (plume breakthrough/bypass) and future risk of having to make changes to the PRB to improve hydraulic performance
- Water-level measurements remain the best indicator of bulk groundwater flow
- Selective use of HydroTechnics™ sensors (measures very localized flow) and colloidal borescope (measures preferential flow) may be useful at some highly heterogeneous sites