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Presentation Outline

RTDF Permeable Reactive Barrier Meeting
Washington DC - Nov 6-7, 2002

e Industrial Facility in VA
1,200’ Long Iron PRB, 5’ down to 44’ deep

Constructed by Azimuth Controlled Vertical Hydraulic
Fracturing Technology

Completed July '02

e PRB Probabilistic Design

Chlorinated Compounds Degradation in presence of
Zero Valent Iron

Probabillistic Design Methodology
Input Parameters, Analysis & Results

o Construction Verification Techniques
Active Resistivity Imaging Technology
PRB Thickness by Inclined Profiling
Hydraulic Pulse Tests to quantify PRB Hydraulic Impact
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Golder Sierra changes its name to:
GeoSierra

Golder Sierra changed its name to GeoSierra as
of August 1, 2002

Both Web Sites will be viewable:

Name change is to distinguish specialized
Design/Build services and expanded products
and services

No change in Management or Ownership
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http://www.goldersierra.com
http://www.geosierra.com

Arrowhead Superfund Site
Montross, VA
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Construction of Iron PRB
Azimuth Controlled Vertical Hydrofracturing
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Azimuth Controlled Vertical Hydrofracturing
Installed Iron Permeable Reactive Barrier

Cleaned
Groundwater

Down Hole

Fracture I_nitiation Installed Iron Permeable
Tooling Reactive Barrier (PRB)
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Deep Installation of PRBs

e PRBs are no longer limited to Shallow Depths

Azimuth Controlled Vertical Hydrofracturing
» Casing Systems installed by conventional drilling
» Initiation Tooling remains inside casing system

» Robust strong casing string enables multiple re-entry and multiple
re-fracturing of same horizon

Real time imagery of PRB geometry during construction
Technology ensures continuous vertical barrier
Technology applicable to both shallow and deep PRB installations

Eight (8) PRBs installed in a variety of geological environments from
shallow to significant depth

e Applicable to Complex Geologies
Clay till, silts and sands
Flowing Sands
Gravel and Cobbles
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PRB and Natural Attenuation Design
Basis
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PRB and Natural Attenuation
Probabilistic Design Methodology
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PRB Design Forecast

COLUMN
REACTIVITY DATA
Degradation Half Lives
Degradation Pathways
Precipitation/Clogging
Desorption Data

VARIABILITY OF INPUT DATA
Hydrogeologic Data
K, i, n

Contaminant Data

Reactivity Dat;
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DESIGN CRITERIA
Target Compound(s)
Effluent Concentrations
Risk Reduction
Impact on Flow Regimes
Emplacement Technique
Variability of Input Data
Construction Quality Control
Performance Monitoring

PRB DESIGN
PRB Depths
PRB Height & Length
PRB Thickness
Construction QA & Specs
Long Term Monitoring
Health & Safety Plan

FORECAST

FIELD PERFORMANCE

Probabilistic Model
Sensitivity Analysis
Confidence Level

Design
Acceptable?
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Reductive Dechlorination of
Chlorinated Solvents by Iron

PCE, TCE, cis-DCE and VC Reduced to Ethene
and Ethane by Zero Valent Iron

Iron Filings Placed In Situ Below Groundwater
Table

Corrosion of lron Is Low Due to Reducing
Environment

In Situ Iron Systems Have Performed as Good or
Better than Expectations from Laboratory Tests
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Chlorinated Compounds Destroyed
In the Presence of Zero Valent Iron

Methanes

Abbreviation

Tetrachloromethane

CT, PCM

Carbon Tetrachloride

56-23-5

Trichloromethane

TCM

Chloroform

67-66-3

Tribromomethane

TBM

Bromoform

75-25-2

Ethanes

Hexachloroethane

HCA

Carbon Hexachloride

67-72-1

1,1,1,2-Tetrachloroethane

1,1,1,2-TeCA

630-20-6

1,1,2,2-Tetrachloroethane

1,1,2,2-TeCA

Acetylene Tetrachloride

79-34-5

1,1,1-Trichloroethane

1,11-TCA

Methyl Chloroform

71-55-6

1,1,2-Trichloroethane

1,12-TCA

Vinyl Trichloride

79-00-5

1,1-Dichloroethane

1,1-DCA

75-34-3

SUELES

Tetrachloroethene

Perchloroethylene

127-18-4

Trichloroethene

Ethylene Trichloride

79-01-6

i 1.2-Di I
trans-1,2-Dichloroethene

trans 1,2-DCE

i1.9-Dichi I

540-59-0

540-59-0

1,1-Dichloroethene

1,1-DCE

Vinylidene Chloride

75-35-4

Vinyl Chloride

VC

Chloroethene

75-01-4

Propanes

1,2,3-Trichloropropane

1,2,3-TCP

Allyl Trichloride

96-18-4

1,2-Dichloropropane

1,2-DCP

Propylene Dichloride

78-87-5

Other Chlorinated

N-Nitrosodimethylamine

NDMA

Dimethylnitrosamine

62-75-9

Dibromochloropropane

DBCP

96-12-8

Lindane

Benzene Hexachloride

58-89-9

1,1,2-Trichlorotrifluoroethane

Freon 113

76-13-1

Trichlorofluoromethane

Freon 11

75-69-4

1,2-Dibromoethane

Ethylene Dibromide

106-93-4
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Reductive Degradation of
Chloroethene Compounds
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Degradation of TCE/c-DCE
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Column Reactivity Test and First Order
Reduction by Zero Valent Iron

e species TCE/PCE
A species VC/c-DCE

Results of Column Reactivity Test with Iron
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First Order Rate Degradation
Model and Constants

e First Order Kinetic Degradation Model Equation

dC/dt=-A C
C=Ce™

e The First Order Rate Constant
In{-&
A == (Co)

| t
o Half Life

los = 0'6% i
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ron Reductive Pathways for Chloroethenes

Compounds

0.1%

PCE
0%

(@] Cl
oo —> : mu\
H

cl Cl Cl H

Tetrachloroethylene Trichloroethylene cis-Dichloroethylene Vinyl chloride

T %

0.1%
1% 1, l DCE ‘//

CI/ \H
(v)
ok 1,1-Dichloroethylene <0.5%

Ethene
B A
2N

Ethylene

LEGEND

t-1,2-DCE
SN H
N
H cl

trans-1,2-Dichloroethylene

RTDFO02.ppt
©GeoSierraLLC

_%>

Major Degradation Pathway

Minor Degradation Pathway

Mol % Conversion range for Daughter Product
by Connelly CC-1022 Iron Fillings.




Simultaneous Differential Equations
due fo Degradation Pathways

e First Order Differential Equations for Degradation
of Chloroethene Compounds

Iron Reductive First Order Model with Daughter Products

PCE—--TCE-—-cDCE-—-VC--—Ethene

Solves: y=-Ay+frac) Ao Cp  etc

® Multiple Differentials for Degradation Pathways

- lp .YI:I

fpt-dp-¥, - At-T,
fpd-Ap ¥ + fd-AL-T, - Ad-T,
fptd-Ap-T, — Atd T,

fpdce-Ap ¥, — Adce-¥,

fpv-Ap ¥, + ftv-At-¥, + fdv-Ad-¥, + fidv-Atd T, + fdcev-hdce ¥, - hv ¥,
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Contaminant Resident Time In
Iron PRB

K=Soil Hydraulic
Conductivity

I = Natural Hydraulic
Gradient

WaferLeVe, ;'ﬁ / Iron PRB

TPRB%

PRB Porosity (Nprg) \\‘ Darcy Flux =Ki Water Velocity in PRB

| (I ) "PRB

ron (! volume s
Reduce Timein Iron

tiron= -lm

PRB
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Functional Design
Requirements of the PRB

Minimal Impact on Natural Groundwater Flow
Regimes

High Groundwater Residence Time in PRB
Degradation of VOCs and Daughter Products
Use of Commercially Available Iron Filings
Use of Proven Emplacement Method

PRB Design to Accommodate Variability of Data
and Site Uncertainty

Construction QA/QC Procedures Implementable
during Construction

Monitored Performance
Minimal O&M

RTDF0Z ppt
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PRB Design Ciriteria

Minimal Impact on Groundwater Flow Regimes
PRB Permeability > Soil Permeability

Filter Pack Design Criteria to Avoid Commingling of Soil
and Iron Filings

Minimal Clogging/Precipitation Impact on PRB
Permeability

High Residence Time of Groundwater in the PRB
Mdaintain High PRB Porosity

VOC Degradation
All VOCs Degraded

Longevity
Expected PRB Functioning for >> 10 years

Passive System
Minimal O&M
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Iron Column Treatability Test
using Site Groundwater

® Bench Scale Treatability Column Test
Site Groundwater used

Connelly CC-1022 Iron Filings
Test run to steady state conditions

® Test Results and Findings
Parent & Daughter Product Degradation Quantified
Half Lives Quantified for PCE, TCE, cis-1,2-DCE & VC

Site Groundwater Suitable for Iron PRB (No
Precipitation or Clogging Issues)

All Contaminants Degraded
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PRB Design Forecast

COLUMN
REACTIVITY DATA
Degradation Half Lives
Degradation Pathways
Precipitation/Clogging
Desorption Data

VARIABILITY OF INPUT DATA
Hydrogeologic Data
K, i, n

Contaminant Data

Reactivity Dat;
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Target Compound(s)
Effluent Concentrations
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Impact on Flow Regimes
Emplacement Technique
Variability of Input Data
Construction Quality Control
Performance Monitoring

PRB DESIGN
PRB Depths
PRB Height & Length
PRB Thickness
Construction QA & Specs
Long Term Monitoring
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PRB Probabillistic Design Analysis
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Permeable Reactive Barrier
Installation Methods

o Funnel and Gate Systems
Braced Excavation & Sheet Piling
Trenching & Slurry Wall

o Continuous Permeable Barriers
Trenching
Slurry Wall
Azimuth Controlled Vertical Hydrofracturing

e Experimental Installation Methods
Vibrating Beam
Jetting

RTDFO02.ppt
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Funnel and Gate Passive Treaiment
System

Sheet Piling Funnel

Fe® Iron
Reactive Wall
(Gate)

Groundwater
Velocity Vectors

RTDFOZ ppt
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Various Reactive Barrier Construction
Techniques
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Azimuth Controlled Vertical Hydrofracturing
Installed Iron Permeable Reactive Barrier

Cleaned
Groundwater

Down Hole

Fracture I_nitiation Installed Iron Permeable
Tooling Reactive Barrier (PRB)
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Azimuth Controlled Vertical
Hydraulic Fracturing Technology

o Initial Artificial Fracture at Required Azimuth
Pre-aligned frac initiation casing system
Dilation of the casing, grout and surrounding soill

e Pore Pressure Relief Ensures Coalescence

Casing delimiters enable use of pore pressure relief

to ensure fracture coalescence even with slight

drilling offsets and casing orientation mis-alignment
o Multiple Re-Fracturing at Same Horizon

Achieve Batrrier Thicknesses up to 9” thick
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Construction QA/QC Procedures

Real Time PRB Geometry Imaging During
Construction

Electrical Excitation of Frac Fluid

Frac Fluid Highly Viscous with Minimal to Zero Leak-
Off to the Formation

Monitored Injected Quantities
Frac Geometry Images During Installation
Frac Coalescence Observed between Frac Wells

Inclined PRB Thickness Profiling

Field Verification of Minimal Impact on
Groundwater Flow Regimes

Pre and Post PRB Pulse Tests across PRB Alignment

RTDFO02.ppt
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Real Time Active Resistivity
Imaging Technology

Surface Pins

N Y

Low Voltage 1 1 i
Excitation oo

Record In Phase
Induced Voltage

Conductive
Frac Fluid
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Disturbed Sampling of a PRB at Depth
and/or in Flowing Ground

SAMPLER DRIVEN
OR CORED TO
DEPTH

OUTER CASING OR
AUGERS DRIVEN
OVER SAMPLER

SAMPLER EXTRACTED
GIVING RISE TO
DISTURBED SAMPLING
RTDFO02.ppt TR
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Inclined Magnetometer Probe Profile of 4”
Iron PRB

4” Thick
Iron PRB

8" Inclined Length
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Inclined PRB Thickness Profiling

Resistivity (ohm-cm)

PRB Intersection
Length=9.6"
PRB Thickness= 4.8"

31 3.

2 33 34 35
Inclined Length (feet)
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Hydraulic Pulse Interference Test

High Precision
Pressure Tranducers

Packers

Hydraulic Source

ot (10001 3 ime

Iron Reactive Barrier
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Typical Hydraulic Pulse Interference
Test Setup
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Typical Hydraulic Pulse Interference
Response Data

Confined Aquifer 35'to 110' bgs
Pulse Well PW-3 at 100'-105'
20 gpm with 20 sec interval
Receiver Well PW-2 at 100'-105'
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Pre and Post PRB Construction Pulse
Interference Tests

Pulse Well PW-3 at 100'-105'
20 gpm with 20 sec interval
Phase 1 Pre-PRB 11/04/00

Pulse Well PW-3 at 100-105' LY

20 gpm with 20 sec interval

Phase 1 Post-PRB 02/09/01 90
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Azimuth Controlled Vertical
Hydrofracturing Technology

Azimuth Control

Special Purpose Frac Casing System Installed by Conventional
Drilling

Downhole Tooling & Packers Installed
Frac Initiated by Casing System

Frac Continuity Assured by Dilating Frac and Pore Pressure
Gradient Coalescence

lron Gel Mixture

Iron Filings Transported in Highly Viscous Degradable Food
Grade Gel

High Specific Gravity Fluid

Monitored Injected Geometry
Real Time Monitoring by Active Resistivity Imaging
Monitored Injected Iron Loading

QA Tests on PRB Thickness and Hydraulic Characteristics

RTDFO02.ppt
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Advantages of Azimuth Controlled
Vertical Hydrofracturing Technology

Proven Technology

Construction of Full Scale Iron PRBs Shallow and at Depth in a
variety of Geological Environments

Capable of Installing PRBs of High Permeability and Porosity
Minimal Impact on Natural Groundwater Flow Regimes
Construction QA/QC and Verification Tests

Real Time Monitored PRB Constructed Geometry and
Continuity

Monitored Injected Iron Loading
Thickness Verification by Inclined Profiling
In Situ PRB Hydraulic Characteristics Quantified

Minimal Excavation and Site Disturbance
Low Personnel and Property Risk Exposure
Excellent Health and Safety Record
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