Remediation of Chlorinated Solvent Source Zones Using ZVI-Clay in Conjunction with Soil Mixing (ZVI-Clay)

Presented at the RTDF Permeable Reactive Barrier Action Team Meeting Albuquerque New Mexico, October 26, 2004

By

Tom Sale, Mitch Olson, Dave Gilbert and Chuck Shackelford

Presentation

- Process
- Laboratory Results
- Field Results
- Future Plans
- Questions

Conceptual chlorinated solvent source zone (Kueper et al., 1993).

ZVI-Clay

November 2003 DuPont Technology Donation to Colorado State University Batchelor et al., 1998 and 2002. United States Patent nos. 5,789,649 and 6,492,572 B2.

ZVI

Reactive Media (Zero-Valent Iron) - Drives reductive dechlorination (Gillham and O'Hannesin, 1994).

(1)
$$Fe^0 \rightarrow Fe^{2+} + 2e^{-}$$

(2)
$$CCI_4 + 2e^- + H^+ \rightarrow CHCI_3 + CI^-$$

Clay

Effect of stabilization of a source zone (ETI 2004)

• Reduces discharge of water through source

- >Reduced downstream contaminant discharge >Increased time for
- reactions to proceed
- Reduced inflow of oxygen and other electron acceptors

• Facilitates mixing

- >High viscosity suspension for uniform iron delivery
- Reduced energy for soil mixing

Mixing

Homogenates source zone:

- Reagent distribution
- Contaminant distribution
- Sediments
- Dispersal of DNAPL pools

9/28 - Initial

9/28 – Post Mixing

9/30 Two Days

South Carolina Site

- •Small release
- •Shallow alluvium
- •Active contaminant attenuation
- •Located within an industrial property

Geochemical Studies

(South Carolina)

Spike sample study matrix											
			3 days (CSU)	7 days (CSU)	14 days (CSU)	28 days (CSU)	28 days (Outside lab				
Spiked and Dried Sample s	0% Fe Contro	w/ clay	CC-0-3	CC-0-7	CC-0-14	CC-0-28	CC-0-28L				
	1% Fe		S-1-3	S-1-7	S-1-14	S-1-28	S-1-28L				
	2% Fe	А	S-2A-3	S-2A-7	S-2A-14	S-2A-28	S-2A-28L				
		В	S-2B-3	S-2B-7	S-2B-14	S-2B-28					
		С	S-2C-3	S-2C-7	S-2C-14	S-2C-28					
		D NAPL	CF-0-3	CF-0-7	CF-0-14	CF-0-28					
	5% Fe Spike		S-5-3	S-5-7	S-5-14	S-5-28					
	2% GMA Fe ^B		S-2G-3	S-2G-7	S-2G-14	S-2G-28	S-2G-28L				
	2% Connelly Fe		S-2C-3	S-2C-7	S-2C-14	S-2C-28					

Rapid degradation of 1,1,2,2-TCA with similar endpoints 680 hours (26 days)

Rapid degradation of Carbon Tetrachloride with similar endpoints 680 hours (26 days)

Rapid degradation of Chloroform

Apparent slow degradation of MC

Xylene – little removal in 28 days

Modeling – Irreversible first order reactions (Eykohlt, 1999)

Ten half lives = Three order of magnitude

Estimated first order reaction rates and contaminant half lives

Treatment	СТ		CF		MC		PCA	
	k(1/hr)	t _{1/2} (hr)						
1% Peerless	0.005	140	0.002	350	0.0002	3500	0.004	170
2% Peerless	0.006	120	0.005	140	0.0002	3500	0.015	46
5% Peerless	0.008	87	0.01	69	0.0002	3500	0.015	46
2% GMA	0.003	230	0.02	35	0.0002	3500	0.08	9

Four orders of reduction magnitude reduction after 3-years?

Martinsville Virginia

- ~ 20 tons Carbon Tetrachloride
- 8,000 Yards
- Initial ~ 4,000 mg/kg
- 2-6 lbs Fe / ft³ soil
- 99.99 % removal CT in 1 year
- 99% removal of total chlorinated compounds in 1 year

Shackelford et al (2004)

Implementation

As built mixing and ZVI content

Martinsville VA - Initial and 1 Year Data

Year 2 Sampling

ZVI Clay Niche

- Chlorinated Compounds
- Mixable alluvium
- Best with limited overhead and/or buried obstructions
- Desire for quick results

Issues

- Longevity of the iron as a function of iron amount and size
- Losses of iron to potentially unproductive reactions
- Process controls (reactions rates, diffusion, biological processes)
- The ability to treat DNAPL
- Field-scale performance monitoring techniques

Acknowledgements

- DuPont
- Solvents-in-Groundwater Research Consortium

Questions