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Why is Downgradient 
Biodegradation Important? 

• Significant contaminant mass and 
concentration will likely be present in 
the aquifer downgradient of the PRB for 
a long time after the PRB is installed 
– Transient processes 
– Steady state processes 



Transient Processes 

• Desorption of contaminants from 
downgradient aquifer solids 

• Reverse diffusion of contaminants from 
stagnant/low-permeability zones 

• Other processes 



Langmuir Sorption Model 

Theoretical Desorption Curve 
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Transmissive sand 

Advancing solvent plume 

Low permeability silts 

Expanding diffusion halo in stagnant zone 

Outward and Inward diffusion in stagnant zones 

Plume Attenuation/ Plume Replenishment 
by Matrix Diffusion - (after Parker et al.,1994 and 
1997) 



Steady State Processes 
Contributing Contaminants 

• Pass-through of certain chlorinated 
compounds that are not effectively treated by 
ZVI such as 1,2 dichloroethane 

• Production of stable chlorinated daughter 
products such as dichloromethane from ZVI 
treatment of carbon tetrachloride 

• Presence of chlorinated contaminants in the 
PRB effluent 
– Parent compounds (TCE, PCE, etc.) 
– Daughter products (cis 1,2 DCE, VC, TCM, etc.) 



Bottom Line 

• There will be downgradient contaminant 
contribution from the aquifer itself for a 
significant time (desorption, diffusion, etc.) 

• There may be chlorinated contaminants in the 
treated PRB effluent 

• Biodegradation can be a powerful tool for 
dealing with this “residual” contamination 
– Natural biological processes 
– Engineered / enhanced bioremediation 
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Overview of Biological 
Reductive Dechlorination 

• Chlorinated solvents used as electron 
acceptor in bacterial metabolism 

• The most important electron donors are 
hydrogen and reduced organic acids 
– acetate (CH3COOH) 
– formate (HCOOH) 
– pyruvate 

• More complex organic substrates undergo 
fermentation to generate electron donors 
– Lactate, benzoate, etc. 
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Fermentation 

Oxidation of an electron donor in the absence 
of a separate electron acceptor: 

Glucose (C6H12O6) ‚ 2 Ethanol (C2H6O) + 2HCO3 
- + 2H+ 

Glucose (C6H12O6) + 4H2O ‚ 2 Acetate (CH3COOH) 
+2HCO-

3 + 4H+ + 4H2 

Methylene Chloride also undergoes 
fermentation producing acetate and hydrogen! 



Bacterial Competition for Hydrogen 
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Contaminant Biodegradation 

• Biodegradation is a function of microbial 
populations and community structure 

• Community structure is dependant on 
environmental conditions, which give 
some bacteria a competitive advantage 
over others: 
– Available electron acceptors 
– Available electron donors 
– Mix of contaminants 



Impacts of ZVI on Biodegradation of 
Chlorinated Compounds 
• Creation of geochemical conditions conducive to 

anaerobic biodegradation 
– Elimination of competing electron acceptors (O2, NO3) 

• Production of hydrogen and other electron 
donors 

• Reduction in overall contaminant loading 
• Removal of “inhibitory” compounds 
• Changing the mixture of contaminants 
• Conversion of parent contaminants to more 

biodegradable daughter compounds 



• Available electron acceptors are used
sequentially in the order of energy yield 

Geochemistry and Electron 
Acceptors 

Oxygen > Fe3+ > 

High energy yield 
(First used) 

Low energy yield 
(Last used) 

Nitrate > Sulfate > Methanogenesis 

Chlorinated Ethenes 



Fe0 Fe+2 + 2e-

2H2O H+ + 2OH-

2H+ + 2e- H2(g) 

R-Cl + H+ + 2e- R-H + Cl-

Production of Hydrogen 
Iron Corrosion Reaction 

2



Production of Fully Dehalogenated 
Daughter Products / Electron Donors 

• CT conversion to acetate, formate 
– Used directly by dehalogenators 

• PCE, TCE conversion to ethene, acetylene 
– ethene used in cometabolic processes that can 

result in dechlorination 
• Direct addition of organic carbon from 

construction can “jump start” downgradient 
biodegradation 
– Biodegradable Slurry Trenching 
– Hydraulic Fracturing (guar) 
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CFC 11 

CFC 21 
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PM-02 Transient Carbon Tetrachloride Concentration Profiles 
(40 ft Downgradient, 78 ft Depth) 
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PM-02 Transient CFC-11 Concentration Profiles 
40 ft Downgradient, 78 ft Depth 
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Sulfate Reduction Induced Downgradient of PRB


Upgradient Downgradient 
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Reduction in Overall 
Contaminant Loading by PRB 

• Reduce total contaminant flux to a point 
where it can be handled by the attenuation 
capacity of the aquifer 
– Available electron donor supply 

• Removal of “inhibitory” compounds 
– TCM known to inhibit reductive dechlorination 

of chlorinated ethenes 
– 1,1,1 TCA and CT also thought to inhibit (may 

actually be competition) 



Changing the Contaminant Mix 

• As with inorganic electronic acceptors, 
dechlorinating bacteria will preferentially use 
RCl electron acceptors in order of available 
energy 

• More accurately, bacteria that utilize the 
higher energy electron acceptors will out-
compete those that use lower energy electron 
acceptors in a given mix (competition for H2) 

• The microbial population will shift in response 
to a change in the mix of electron acceptors 



Gibbs Free Energy for Common 
Dechlorination Reactions 

Dechlorination Reaction Gibbs Free Energy 
(kilojoules / mole) 

PCE >  TCE 55.3 

TCE >  cis-1,2 DCE 53.0 

cis 1,2 DCE =>  VC 38.3 

VC  =>  ethene 43.4 

CT  =>  TCM 6 5 .0 

TCM  => CM 54.0 

1,1,1 TCA => 1,1 DCA 54.1 

1,1 DCA => CA 44.5 

=

=

D



TCE Plume 

• TCE 53 ) 
• cis 1,2 DCE 38 ) 
• VC 43 ) 

Conversion of cis 1,2 DCE to VC will likely 
not proceed until all of the TCE is 
converted 

(cis 1,2 DCE kJ/mole
(VC kJ/mole
(Ethene kJ/mole



Caldwell Trucking 
10 ppm TCE Microcosm 

• Half Lives: TCE 2.5 days; cis-DCE 10.4 
days; VC 10.7 days 
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Impact of PRB on Contaminant Mix and 
Microbial Community Structure 
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Mixture of TCE, TCA 

• TCE 53 ) 
• cis 1,2 DCE 38 ) 
• 1,1,1 TCA 54 ) 

Conversion of cis 1,2 DCE to VC will likely 
not proceed until all of the TCE and TCA is 
converted 

(cis 1,2 DCE kJ/mole
(VC kJ/mole
(1,1 DCA kJ/mole



Mixed Chloroethene / ethane Site 
Ethenes 
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Conversion of Contaminants to 
More Biodegradable Compounds 

• Some fully halogenated compounds only 
biodegrade via reductive dechlorination 
(PCE, CT) 

• Partially dechlorinated daughter compounds 
may degrade via a variety of pathways 
– Reductive dechlorination (cis 1,2 DCE, VC) 
– Anaerobic oxidation (cis 1,2 DCE, VC) 
– Cometabolic (TCE, cis 1,2 DCE, TCM, DCM) 
– Aerobic oxidation (cis 1,2 DCE, VC, DCM) 
– Fermentation (DCM, VC) 



Closing Thoughts 

• A PRB alters environmental conditions in the 
aquifer, resulting in shifts in microbial 
community structure and resultant 
contaminant biodegradation 

• PRB and biodegradation can / should be 
considered as parts of an integrated 
remediation system design 

• Biostimulation and bioaugmentation can be 
done downgradient of a PRB to enhance 
contaminant biodegradation if baseline 
attenuation capacity is not sufficient 
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