Reductive Dechlorination in Reactive CDFs

Bill Batchelor Civil Engineering Texas A&M University bill-batchelor@tamu.edu

Acknowledgements

- Texas Advanced Technology Program
- Mr. Sukil Son

Overview

- Reactive Containment/DSS
- Reductive Dechlorination
 - Abiotic
 - Biotic/abiotic
- Summary

Degradative Solidification/Stabilization

- Contain Metals and Organics
 - Physical transport reduction
 - Chemical immobilization
- Degrade Organics
 - Oxidation
 - Reductive dechlorination

Time for Degradation

- Transport
 - Seepage (PCB half-times 10²-10⁴ years)

(WES, EEDP-02-19, 1996)

- Diffusion
- Volatilization

Leaching-Reaction Model

- First-order degradation
- Linear partitioning
- Fickian Diffusion

Leaching/Degradation

- First Damköhler ($D_{a,I}=kt/R$) (for seepage, $D_{a,I}=k\theta/R=kL/Rv$)
- Second Damköhler (D_{a,II}=kL²/D_e)
- \bullet Dimensionless time ($\overline{t} = D_e t/RL^2$)

Leaching/Degradation

Leach Model Summary

- Ultimate Fraction leached
 - $\blacksquare = (D_{a,II})^{-0.5} = (D_e/kL^2)$, if $D_{a,II} > 1$
 - R has no effect
 - L is important
- If 90% ultimately degraded, $D_e = 5 \times 10^{-10} \text{ m}^2/\text{s}$, L=10 m
 - $k = 0.016 \text{ yr}^{-1} (t_{1/2} = 44 \text{ yr} = 16,000 \text{ days})$
 - $k_{app} = k/R$

Required Half-lives

	Required Half-life (days)	
	90%	99%
Seepage (10 ⁻⁵ -10 ⁻⁷ cm/s)	80-8,000	8-800
Diffusion	16,000	160

Reductive Dechlorination

- $R-CI + 2e^{-} + H^{+} = R-H + CI^{-}$
- Abiotic, Biotic, Abiotic/Biotic
- Various reductants

Potential reductants

- Zero-valent metals, bimetals(e.g. Fe, Fe/Pd)
- Fe(II) (solution, sorbed, solids)
- Sulfides, polysulfides
- Hydrogen
- Dithionite

Carrier/bulk reductant

- ◆Vitamin B₁₂/Ti(III), dithiothreitol
- Other biochemicals/organics ?

PC-based DSS for PCE

Effect of Fe(II) Dose

Effect of pH

Solid Phase Reaction

PC-based DSS for HCB (IUPAC No. 128)

Effect of pH

Effect of Fe(II), PC Doses

Products

Effect of Temperature

Apparent Half-lives

- Optimum pH, Fe(II), PC
 - 1.1 day at 66° C
 - 150 day at 26 ° C (calculated)
- Affected by R
 - 100 in experiments
 - 64,000 to 81,000 in sediments (WES, EEDP-02-19, 1996)

PC-based DSS - Active Reductant

- Fe(II) in solution
- Fe(II) sorbed on surfaces
- Fe(II) in new compound
 - Green rust (LDH)
 - Substituted calcium chloraluminate (LDH)

Nanoscale Fe, Fe/Pd

Wang and Zhang, ES&T, 31:2154-2156, 1997.

FIGURE 3. Changes in GC relative peak areas of an Aroclor 1254 solution in 17 h with (a) nanoscale Pd/Fe particles and (b) nanoscale Fe particles. GC peaks in (i) were from blank samples. Peaks in (ii) were from samples containing the nanoscale Fe or Pd/Fe particles. Peaks in (iii) were the difference between (ii) and (i) and represented the net degradation. Initial PCB concentration was 5 mg/L. Metal to solution ratio was 5 g/100 mL.

Vitamin B₁₂

Wood, Trobaugh, and Carter, ES&T, 33: 857-863, 1999.

FIGURE 2. Results of sediment ampule experiment: (a) 2,3,4,5,6-PeCB fraction with time in active and control samples; (b-d) TeCB, TCB, and DCB sums with time in active samples. TiCt represents the reductant, titanium(III) citrate.

Biotic/Abiotic (PCB)

Zwiernik, Quensen, and Boyd, ES&T, 32: 3360-3365, 1998.

FIGURE 1. Effects of FeSO₄ amendments on anaerobic microbial dechlorination of Aroclor 1242. Rates and extents of dechlorination were determined by comparing changes in the average number of meta + para chlorines per biphenyl (no ortho dechlorination was observed). Error bars indicate standard error of triplicate samples. Unamended samples served as positive controls to establish indigenous dechlorination activity; autoclaved samples served as negative biological controls.

Biotic/Abiotic (CF)

Weathers, Parkin and Alvarez, ES&T, 31: 880-893, 1997

FIGURE 1. CF degradation (a), DCM formation (b), hydrogen evolution and utilization (c), and methane production (d) in batch reactors containing 2 g of iron filings and killed or live cells, or mineral medium. Filled symbols indicate treatments that were not amended with iron. All incubations received CF except those designated CF free.

Summary - Abiotic

- PC-based DSS
 - Probably too slow in sediments
 - Produce active agent
- Fe, Fe/Pd
 - Extend to aqueous
 - Extend to macro-scale
- Fe(II) minerals
 - green rust, magnetite
 - FeS, FeS₂,

Summary – Abiotic/Biotic

- ♦FeSO₄
- Fe
- ◆Electron carriers (Vit B₁₂?)
- Others?

Reductive Dechlorination in Reactive CDFs

Bill Batchelor Civil Engineering Texas A&M University bill-batchelor@tamu.edu

