Update on Reactive Capping Project in the Anacostia River http://www.hsrc-ssw.org/anacostia/

Danny D. Reible and W. David Constant Hazardous Substance Research Center/S&SW Louisiana State University Yuewei Zhu Horne Engineering

> RTDF Workshop Baltimore, MD February 19, 2004

Workshop Targets and Outline

- What is the basic approach?
- What factors influence the suitability?
- What is the stage of development?
 - Where is the technology being applied?
- What are the results and costs?
- What are the implementation considerations?
- Observations?
- Future Directions?

- What tools did we use to characterize the site and help design the caps?
- What are the options for "active" capping and which ones are likely to be effective in the demonstration area?
- How are we going to build the caps and measure success or failure?

Potential of Active Caps

- Sand caps easy to place and effective
 - Contain sediment
 - Retard contaminant migration
 - Physically separate organisms from contamination
- Greater effectiveness possible with "active" caps
 - Encourage fate processes such as sequestration or degradation of contaminants beneath cap
 - Discourage recontamination of cap
 - Encourage degradation to eliminate negative consequences of subsequent cap loss

Active Capping Demonstration

- Compare effectiveness of traditional and innovative capping methods relative to control
- Demonstrate and validate under realistic, well documented, in-situ, conditions at contaminated sediment site(s)
 - Better technical understanding of controlling parameters
 - Technical guidance for proper remedy selection and approaches
 - Broader scientific, regulatory and public acceptance of innovative approaches

Overall Project Scope

- A grid of capping cells is being placed at a well characterized site:
 - Contaminant behavior before capping has been assessed
 - Various capping types are being deployed within the grid to evaluate placement approaches and implementation effectiveness
 - Caps will be monitored for chemical isolation, fate processes and physical stability
 - Cap types and controls will be compared for effectiveness at achieving goals

Project Participants

- Anacostia Watershed Toxics Alliance
- LSU HSRC/S&SW
- EPA SITE Program/Battelle
- Sediment RTDF
- Treatability Studies (in addition to LSU)
 - Carnegie Mellon University
 - Hart-Crowser
- Field Program (in addition to LSU)
 - Horne Engineering
 - Sevenson Environmental Services
 - EA Environmental Consultants
 - Electric Power Research Institute/PEPCO

University of New Hampshire Hull and Associates

Cornell University

Ocean Survey HydroQual

Anacostia River, Washington DC

ECC: Earth Conservation Corps DPW: Dept. of Public Works WASA: Washington Water & Sewer Authority ACRC: Anacostia Community Rowing Center USACE: Debris Removal Section, Baltimore WGP: Washington Gas Pier STP: ST Services Pier EPBC: Eastern Power Boat Club

Washington Navy Yard

Area 2

USACE

ACRC

WGP

EPBC

STP

New Steel Sheet Piles

ECC

Frederick Douglass Memorial Bridge

M Street

GSA

Area 1

Cement Plant

Summary of Field Investigations

- Geophysical investigation with bathymetry measurement, side scan sonar, "chirp" sonar, magnetometry survey
 - Sediment profile imaging (SPI) photography survey to visually assess the sediment
 - Sampling of the sediment to determine contaminant concentrations and the distribution of contaminant concentrations
 - River flow current velocity measurement with the Acoustic Doppler Current Profiler (ADCP)
 - Multicoring for sediment radionuclide characterization.
 - Geotechnical investigation to evaluate the sediment stability and consolidation behavior under the loadings imposed by the active cap materials
 - Benthic investigation

Geophysical Survey Findings

- Area 1 is characterized by a gently undulating surface with few surface irregularities. River bed elevations range from 5' near shore to 20' at the southern boundary of the area.
- The riverbed in Area 1 is fine grained sediments ranging from soft aqueous silts and muds to aqueous fine grained sand and silt.
- Subbottom penetration of the profiler system was restricted along all tracklines in the survey areas due to the presence of gaseous-type sediments in the near-subsurface.

Sediment Camera Image

Bubble

Subbottom profiling - Current

ADCP Results Velocities During Maximum Flood

Geochronology from Radionuclide Profiles

Pb-210 profiles suggest deposition rate of 0.6-1.0 cm/yr Cs-137 profiles suggest deposition rate >0.44->0.84 cm/yr Be-7 profiles suggest biodiffusion coefficient of 24-34 cm²/yr

Core 2

²¹⁰Pb Accumulation rate 0.66 cm/y, $r^2 = 0.84$ ¹³⁷Cs Accumulation rate >0.44 cm/y ⁷Be Biodiffusion Coefficient D_b = 24 cm²/y, $r^2 = 0.86$

Seepage rates in test area

Geotechnical Investigation

- Five deep borings ranging from 21 feet to 27 feet
- Split spoon and undisturbed Shelby Tube (ST) samples collected for engineering properties testing
- Field vane shear tests performed at adjacent location
 - Inferred subsurface profile defining sediment strata
 - •15-20' of high plasticity silty clay at surface
 - •Underlain by sand & gravel sometimes intermixed with clay

Sediment Contamination Delineation

- 13 EPA priority metals
- PAHs
- PCBs (both aroclors and congeners)
- Pesticides
- Total phosphorus
- Total Kjeldahl nitrogen
- Total organic carbon (TOC)
- Acid volatile sulfide/simultaneously extracted metals

Evaluation of Active Caps

Seepage control

- Aquablok[™] included in demo Hull/EPA/Battelle
 - Gravel/rock core covered by clay layer
 - Expands in water decreasing permeability
 - Applicable to seep locations

Sequestration of hydrophobic organic compounds

- Activated Carbon cost suggests need for controlled placement technology
- Organo modified clay most effective against NAPL, undetermined success against dissolved contaminants
- Ambersorb very high cost to effectiveness ratio
- XAD-2 very high cost to effectiveness ratio
- Coke low cost but still needs controlled placement technology (included in program) - CMU

Evaluation of Active Caps

- Sequestration of metals
 - Apatite included in program UNH
- Encourage degradation
 - Bion Soil potential for nutrient release, effective primarily against chlorinated organics (contaminants subject to anaerobic degradation)
 - Zero valent iron small fraction of available metals and low PCB concentrations limits impact, longterm effectiveness of commercial iron for metal reduction or anaerobic dechlorination

Sorptive Media

- Coke (Lowry et al., CMU)
 - Strong PCB sorption (K_d)
 - Less bioavailable (Talley et al. 2002)

Furnace Coke and Coke Breeze

Apatite-Based Barriers and Immobilization – Melton et al., UNH

Apatite Effectiveness

- Diffusion experiments were conducted on metal spiked sediments in laboratory controlled conditions.
- Effective diffusion coefficients decreased in phosphate barriers up to 1.5 orders of magnitude for some elements including Pb, Cu, Cr, and Zn.
- Mineralogical analysis of the interface shows the formation of highly insoluble lead phosphate minerals from the apatite group.
 - $Pb_5(PO_4)_3OH$

Selected Active Caps

AquaBlok[™] – w/EPA SITE program

- Tidal seepage control
- Potential for uplift during tidal range
- Coke
 - PAH sequestration
 - Effectiveness of placement in laminated mat with CETCO
- Apatite
 - Metal sequestration
 - Effectiveness of direct placement
- Sand (for comparison)

Cap Placement

- The cap material will be placed with a clamshell bucket using WinOps for horizontal location control
 - •Nominal 15 cm active layer except for coke and Aquablok
 - •15 cm overlying sand layer
- Silt Curtain will be used during the cap placement.
- Cap thickness will be monitored using both instrument and manual (surveyor) methods.
- Required water quality monitoring will be performed accordingly.

Status of Placement 1st Quarter 2004 (CY)

Monitoring Cap Effectiveness

- Employ high resolution cores to define placement and cap effectiveness
 - Bottom of core undisturbed sediment
 - Middle of core cap/sediment interface
 - Examine interlayer mixing
 - Examine contaminant migration/fate processes
 - Top of core cap/water interface
 - Examine recontamination
 - Examine recolonization
- Supplement with physical monitoring
 - Water column (flow, suspended sediment, chemical)
 - Non-invasive (sonar, bathymetry)
 - Invasive (sediment profiling camera)

Monitoring Cap Effectiveness

- Inclinometer for Aquablok
 - Model predictions suggest uplift potential due to gas and tidal forces
- Chirp sonar to evaluate cap homogeneity and thickness
 - Underlying gas will help gain better resolution from the sonar
- Seepage meters and Piezometers
 - To assess potential for and seepage flows

Horizontal EL In-Place Inclinometer

Sonar Fish

Seepage Meters

Some Lessons So Far and Points to Consider

- Information Transfer to Stakeholders
- Site Selection/Characterization
- Technologies/Treatability Testing
- Permits/Approvals DC EHA, USACE, NPS, GSA, Coast Guard, etc.
- Contracting/Subcontractors Characterization, Placement, Monitoring
- Staging Area GSA
- Characterization/Construction/Monitoring Documents
- www.hsrc-ssw.org/anacostia/

Thank You

Questions?

Each sampling event

- Water, biological sampling inclinometer, piezometer
- Surficial sediment (sand) collection PCBs, PAHs, metals
- Cores 3 cores per cap material for visual observation photograph and record, measure layers, physical measurements (Eh, Ph probe), grain size distribution
- 3 cores for low resolution chemical measurements
 - Upper 3 inches provide sample of surficial sediments
 - Active layers PCBs, PAHs, metals+porewater
 - Underlying sediment upper 2-3 inches for PCBs, PAHs, metals + porewater
- 3 cores (duplicates of above) for high res chem measure at LSU
- 3 cores (duplicates) of Coke Breeze to CMU, 3 cores (duplicates) of apatite to UNH
- Other LSU will evaluate porewater peepers, SPMDs and other samplers)