

ENVIRONMENT AGENCY

PRBs in the UK: New Agency Guidance Monkstown ZVI & New Sequential Reactors

Prof. Robert M. Kalin

School of Civil Engineering, Queen's University Belfast Belfast N. Ireland UK BT9 5AG Thanks to some of those in our research group that have contributed in one way or another to the work presented here.

Academic Staff: Dr. M. Larkin, Dr. T. Elliot, Dr. V. Sivakumar, Dr. D. Hughes, Dr. J. McKinley, Dr. B. Kulessa

Research Officers: Dr. Y.S. Yang, Dr. G. Boshoff, Dr. W. Meir-Augustein

Post Doctoral Fellows: Dr. U. Ofterdinger, Dr. R. Doherty, Dr. V. Decroq, Dr. K. Redeker, Dr. F. Keppler, Dr. A. Ferguson, Dr. D. Fairley, Dr. S. Ardichandran, Dr. D. Gibbons, Dr. A. Mahesh, (Dr. J. Barth – SUERC, Dr. J. Hall – Princeton)

Research Assistants: Ms. A. Downey, Mr. K. Dickson, Ms. K. McGeough

Technical Support: Dr. N. Ogle, Mr. M. Matiasek, Mr. E. Tujek, Mr. M. Carey,

PhD Students: Mr. M. Craig, Ms. T. Adotula, Mr. T. Montegue, Ms. M. Archibold, Ms. O. Crowley,

Industrial Collaborators: Nortel, Keller, OCSC, ETI, IP, QUESTOR IAB, EcoMesh Funding Sources: EPSRC, NERC, BBSRC, EU, EA England and Wales, DOENI

Guidance on the Design, Construction, Operation and Monitoring of Permeable Reactive Barriers

National Groundwater & Contaminated Land Centre report NC/01/51

M. A. Carey, B. A. Fretwell, N. G. Mosley & J. W. N. Smith

Entec (UK) Ltd

* Environment Agency, NGWCLC

Technical Advice Prof. Kalin Prof. Jefferies Dr. Boshoff

✓ Change in UK Legislation
✓ Change in UK Remediation
✓ Route to Commercial Use
✓ Ca. >£100M impact?

Detailed 1-day Guidance Seminars PRB-Net & First Faraday

<u>Workshops</u>

Monday 21 October-Aberdeen Wednesday 23 October -Belfast Friday 25 October -Dublin Monday 28 October - London Wednesday 30 October - Cardiff Tuesday 12 November - Sheffield Thursday 14 November - Newcastle

Training Courses

Environment Agency 7 Regional Offices Monday 7 October 2002 to Friday 18 October 2002

Definition

"A Permeable Reactive Barrier is an engineered treatment zone of reactive material(s) that is placed in the subsurface in order to remediate contaminated fluids as they flow through it.

A PRB has a negligible overall effect on bulk fluid flow rates in the subsurface strata, which is typically achieved by construction of a permeable reactive zone, or by construction of a permeable reactive 'cell' bounded by low permeability barriers that direct the contaminant towards the zone or reactive media"

Why produce this guidance?

- Provide Agency, consultants and remediation contractors with good practice guidance;
- Underpin an Agency Enforcement Position on the regulation of PRBs
- Encourage the effective use of sustainable remediation techniques, including PRBs.

Key principles (1)

- PRB should be selected when it is the 'best practicable technique';
- Guidance applies to a wide range of contaminants and PRB designs;
- Framework for development and justification of PRB design, monitoring regime and decommissioning arrangements.

Key principles (2)

- Design
 - -Treatability tests
 - Pilot scale trials
 - Modelling
 - Hydraulic effects
 - Residence time and reactivity
 - Geochemistry and longevity assessment
- Decommissioning

PRB Licensing requirements

- Where treatment of contaminated groundwater takes place it requires a Waste Management Licence (site licence) or PPC Permit, unless:
 - Exclusion (e.g. not controlled waste)
 - Exemption (e.g. subject to a discharge consent Reg 16, WMLR94)
- Agency may take an Enforcement Position
 Works Instruction 4/98
 - -As amended to include PRBs

What does the EP not extend to?

- Borehole arrays (e.g. ORCTM, HRCTM, nutrient injection etc) - *in situ* bioremediation;
- Air-sparge / bio-sparge (including sparge curtains);
- Soil solidification / stabilisation;
- treatment of waste soil
 - all MPL
- Low permeability clay / sorption barriers ***
 Not licensable activity
- Technical Guidance: May be helpful to above treatments.

Framework for guidance

Preliminary assessment

Is a PRB a viable option?

SI, pilot studies and design

Refine conceptual model and design PRB

Construction

Installation of PRB

Verification and monitoring Does PRB manage risks? Does PRB clog? Decommissioning

PRB installations in the British Isles 7 PRBs + 12 Soil Mix installed 10 in Feasibility stages (includes new patents for treatments)

Continuous Wall

USA more popular

Long-term will it be a source term?

Funnel and Gate

UK more popular Can be cleaned out.

> (Reproduced courtesy of EnviroMetal Technologies Inc)

Operation

Maintenance

Monitoring

Decommisioning

Monitoring objectives:

Performance assessment – Outflow concentrations / flux test against remedial objectives validate PRB effectiveness PRB deterioration (fouling) – Hydraulic controls By-pass flow impacts on GW flow regime - Test conceptual model

Monkstown ZVI Site

CL:AIRE TDP Report 4 – Operation

QUB Report in prep on Maintenance and Decommissioning plan

TCE Concentrations Upstream of Reactor

cis 1,2 DCE Concentrations Upstream of Reactor

PRB implementation in Belfast/N.Ireland

TCE Concentrations in Reactor Monitoring Wells

TCE Concentrations in Reactor Monitoring Well (excluding RB5)

TCE Concentrations in Downgradient Monitoring Wells

PRB implementation in Belfast/N.Ireland - 5 Years Later.....

2002: Nortel approached QUB for long-term R&D

Experimental Setup - GC-MS/IRMS

TCE Degradation with Fe⁰ - Products

Belfast iron, control # 1, 143 hours

TCE Degradation Fe⁰ – GC-MS/IRMS

Belfast iron, control # 1,

TCE Degradation with Fe⁰ – Isotopes

Belfast Iron - Rates

Belfast Iron – QUB EM Images Control Center

Entrance

x 300

x 50

x 4500

Monitoring objectives:

Performance assessment Outflow concentrations / flux (Gate) tested against remedial objectives ✓ validated PRB effectiveness PRB deterioration (fouling) not threat <u>Hydraulic control</u> (Funnel) ✓ By-pass flow – none noted impacts on GW flow regime - negligible Test conceptual model

BROWNFIELD REDEVELOPMENT QUB Project for Biologic PRB at Portadown

Portadown Gas Works

- Hydrogeology & Modelling
- BioGeochemistry
- Microbial Ecology
- Microbial Genetics
- Full-scale implementation
- Evaluation

Up to 1500 existing gasworks sites in the UK still requiring remediation

Desk Study

Old Landfill
Spoil from factory
Gasworks

Petrol Stations

Site Investigation

Portadown Gasworks Site Investigaton

Intrusive SI

Mineral Oil

Complexed Cyanide

3-D Multi-level information

Geochemistry of groundwater on site is controlled by nitrate – ammonia microbial processes and therefore very little H_2S is formed

Microbiological Investigation

Conceptual Geologic Framework

Site Lithologies

BH_map.gpr

Hydrogeologic Framework

Final Flow Field Pre-Works

Note the effect of underground structures on pathlines.

(off-site migration of plume encountered where modelled predicted)

OR Centre

Modelled Water Table for Site

Observed Modelled Water Table at Site

Laboratory Feasibility Study

Treatability study using actual site water

Columns at QUB

1-D Flux and Rate Experiments

2-D Biologic Treatment Feasibility Study

Rates of BTEX removal for the lab-scale reactor were use in full-scale designed to ensure adequate residence time and hence removal of contaminated substances. (note: Microtox indicates toxicity is removed after only 1 week of pilot scale operation)

