Electrolytic Reactors (e-barrier) for the In Situ Treatment of Chlorinated Compounds -Borden Field Experiment

> Matthew Ballaban¹, Tom Sale², Dave Gilbert², Robert Gillham¹

University of Waterloo¹ • Colorado State University²

Introduction

Background

Reduction

Laboratory Experiments

Sale and Gilbert (1998)

$2H_2O \leftrightarrow O_2(g) + 2e^- + 2H^+$

$2H_2O + 2e^- \leftrightarrow H_2(g) + 2OH^-$

Technology Evolution

Pankow and Cherry (1996)

Objectives

Performance Evaluation

- 1) Reference potentials sufficient for contaminant redox reactions
- 2) Evaluate precipitate management technique
- 3) Overall treatment performance including the effects of increasing applied voltage
 4) Investigate possible downgradient/ upgradient treatment processes

Methodology

Field Experiment

- Installed a prototype e-barrier in the field
- Collected water samples using a multilevel sampling network
- Monitored PCE, TCE and breakdown products both upgradient and downgradient from the e-barrier
- Calculated percent removals at operating voltages of 0, 5, 7 and 10 volts

Front View

Side View

Internal Construction

Borden Installation

e-barrier Site Overview

e-barrier location

Plan View –sampling network

Results & Discussion

PCE Long Section

TCE Long Section

cis-DCE Long Section

Total µmoles Long Section

Time Averaged Trends

Treatment vs.Voltage

Laboratory Experiment

Downgradient Reactions

- Trends Decreasing PCE
 Increasing TCE and cis-DCE
- Microbial reductive dechlorination of PCE often ends at cis-DCE (*Chapelle*, 2001)
- Microorganisms often use H₂ as direct electron donors for reductive dechlorination (*He et al.*, 2002 and *Fennell and Gossett*, 1997)
- e-barrier produces H₂ through electrolysis

Hypothesis

• In the presence of excess H₂, indigenous Borden microorganism are able to degrade PCE to TCE to cis-DCE

Field H₂ Measurements

Microcosm Experiment

- Soil and GW collected from e-barrier site
- Conducted in an anaerobic chamber
- 2 Sterile controls
- 2 Active microcosms
- Aqueous samples collected over 100 days

Microcosm Sterile Controls

Microcosms, Active

Conclusions

Conclusions

1) Large oxidation and reduction potentials near electrodes

- in excess of 1.7 V and -2.8 V vs. SHE
- operating costs of 0.93 cents day⁻¹ m⁻²
- 1st and 3rd electrodes free from precipitate buildup
 - physical observation of 1st and 3rd electrodes
 - zero volt bromide tracer test
- 3) e-barrier performed as a mixing wall
 most likely due to O₂ and H₂ gas evolution

Additional Conclusions

- 4) Consistent PCE, TCE and total CVC removal through the e-barrier
 - downgradient transformations of PCE to TCE ending in cis-DCE
 - no clear relation could be identified between removal and imposed potential
 - further laboratory and field experiments are warranted before full scale field applications for chlorinated compounds
- 5) Downgradient reactions could be a result of electro-generated H_2 enhanced microbial dechlorination

F.E. Warren AFB field and Laboratory Energetic e-barrier Experiments

Tom Sale

ESTCP - F.E. Warren AFB

TCE Center Transect (µg/L)

6.5 Volts on August 20, 2003 (205 days)

SERDP Energetics

RDX Results (5.0 V)

e-barrier Path Forward

- Chlorinated Ethenes
 - ESTCP / F.E. Warren
 - 9V, PFLA, Inorganic
 - ESTCP Report Summer 04
- Energetics
 - SERDP/Army Corps Engineers
 - Reaction Pathways/Mass Balance
 - Screening Locations for Field Demonstration

Solvents in Groundwater Research Consortium

NSERC Industrial Research Chair in Groundwater Remediation

ESTCP and **SERDP**

Appendix

Electrokinetics

Applied System Voltage

Anode Reference Potential

Cathode Reference Potential

Eh, pH and Cond. Trends

