Impacts of a Zero Valent Iron PRB on Downgradient Biodegradation Processes

> John E. Vidumsky DuPont Corporate Remediation Group

Why is Downgradient Biodegradation Important?

- Significant contaminant mass and concentration will likely be present in the aquifer downgradient of the PRB for a long time after the PRB is installed
 - Transient processes
 - Steady state processes

Transient Processes

- Desorption of contaminants from downgradient aquifer solids
- Reverse diffusion of contaminants from stagnant/low-permeability zones
- Other processes

Langmuir Sorption Model

First Order Model: $v = K_d c_d$ with $K_d = f_{oc} K_{oc}$

$$c_p = mv$$

= mK_dc_d

$$c_T = c_d + c_p$$
$$= c_d + mK_d c_d$$

Plume Attenuation/ Plume Replenishment by Matrix Diffusion - (after Parker et al., 1994 and 1997)

Outward and Inward diffusion in stagnant zones

Steady State Processes Contributing Contaminants

- Pass-through of certain chlorinated compounds that are not effectively treated by ZVI such as 1,2 dichloroethane
- Production of stable chlorinated daughter products such as dichloromethane from ZVI treatment of carbon tetrachloride
- Presence of chlorinated contaminants in the PRB effluent
 - Parent compounds (TCE, PCE, etc.)
 - Daughter products (cis 1,2 DCE, VC, TCM, etc.)

Bottom Line

- There will be downgradient contaminant contribution from the aquifer itself for a significant time (desorption, diffusion, etc.)
- There may be chlorinated contaminants in the treated PRB effluent
- Biodegradation can be a powerful tool for dealing with this "residual" contamination
 - Natural biological processes
 - Engineered / enhanced bioremediation

Conceptual Model - PRB with Natural Biodegradation (Steady State)

Distance

Overview of Biological Reductive Dechlorination

- Chlorinated solvents used as electron acceptor in bacterial metabolism
- The most important electron donors are hydrogen and reduced organic acids
 - acetate (CH3COOH)
 - formate (HCOOH)
 - pyruvate
- More complex organic substrates undergo fermentation to generate electron donors
 – Lactate, benzoate, etc.

Fermentation

Oxidation of an electron donor in the absence of a separate electron acceptor:

Glucose $(C_6H_{12}O_6) \rightarrow 2$ Ethanol $(C_2H_6O) + 2HCO_3^- + 2H^+$

Glucose ($C_6H_{12}O_6$) + $4H_2O \rightarrow 2$ Acetate (CH_3COOH) + $2HCO_3^- + 4H^+ + 4H_2$

Methylene Chloride also undergoes fermentation producing acetate and hydrogen!

Bacterial Competition for Hydrogen

Contaminant Biodegradation

- Biodegradation is a function of microbial populations and community structure
- Community structure is dependant on environmental conditions, which give some bacteria a competitive advantage over others:
 - Available electron acceptors
 - Available electron donors
 - Mix of contaminants

Impacts of ZVI on Biodegradation of Chlorinated Compounds

- Creation of geochemical conditions conducive to anaerobic biodegradation
 - Elimination of competing electron acceptors (O2, NO3)
- Production of hydrogen and other electron donors
- Reduction in overall contaminant loading
- Removal of "inhibitory" compounds
- Changing the mixture of contaminants
- Conversion of parent contaminants to more biodegradable daughter compounds

Geochemistry and Electron Acceptors

 Available electron acceptors are used sequentially in the order of energy yield

High energy yield (First used)

Low energy yield (Last used)

Production of Hydrogen Iron Corrosion Reaction

 $Fe^{0} \longrightarrow Fe^{+2} + 2e^{-}$ $2H_{2}O \longrightarrow 2H^{+} + 2OH^{-}$ $2H^{+} + 2e^{-} \longrightarrow H_{2(g)}$ $R-CI + H^{+} + 2e^{-} \longrightarrow R-H + CI^{-}$

Production of Fully Dehalogenated Daughter Products / Electron Donors

- CT conversion to acetate, formate - Used directly by dehalogenators
- PCE, TCE conversion to ethene, acetylene
 - ethene used in cometabolic processes that can result in dechlorination
- Direct addition of organic carbon from construction can "jump start" downgradient biodegradation
 - Biodegradable Slurry Trenching
 - Hydraulic Fracturing (guar)

Carbon Tetrachloride Reactions with ZVI

CFC 11 Reactions with ZVI (Trichlorofluoromethane)

PM-02 Transient Carbon Tetrachloride Concentration Profiles (40 ft Downgradient, 78 ft Depth)

Sulfate Reduction Induced Downgradient of PRB

Upgradient

Downgradient

Methanogenesis

Reduction in Overall Contaminant Loading by PRB

- Reduce total contaminant flux to a point where it can be handled by the attenuation capacity of the aquifer
 - Available electron donor supply
- Removal of "inhibitory" compounds
 - TCM known to inhibit reductive dechlorination of chlorinated ethenes
 - 1,1,1 TCA and CT also thought to inhibit (may actually be competition)

Changing the Contaminant Mix

- As with inorganic electronic acceptors, dechlorinating bacteria will preferentially use RCI electron acceptors in order of available energy
- More accurately, bacteria that utilize the higher energy electron acceptors will outcompete those that use lower energy electron acceptors in a given mix (competition for H₂)
- The microbial population will shift in response to a change in the mix of electron acceptors

Gibbs Free Energy for Common Dechlorination Reactions

Dechlorination Reaction	Gibbs Free Energy
	(kilojoules / mole)
PCE => TCE	55.3
TCE => cis-1,2 DCE	53.0
cis 1,2 DCE => VC	38.3
VC => ethene	43.4
CT => TCM	65.0
TCM => DCM	54.0
1,1,1 TCA => 1,1 DCA	54.1
1,1 DCA => CA	44.5

TCE Plume

- TCE → cis 1,2 DCE (53 kJ/mole)
 cis 1,2 DCE → VC (38 kJ/mole)
- VC → Ethene

(43 kJ/mole)

Conversion of cis 1,2 DCE to VC will likely not proceed until all of the TCE is converted

Caldwell Trucking 10 ppm TCE Microcosm

 Half Lives: TCE 2.5 days; cis-DCE 10.4 days; VC 10.7 days

Impact of PRB on Contaminant Mix and Microbial Community Structure

Faster DCE conversion

Vinyl Chloride

Mixture of TCE, TCA

- TCE → cis 1,2 DCE (53 kJ/mole)
- cis 1,2 DCE → VC (38 kJ/mole)
- 1,1,1 TCA → 1,1 DCA (54 kJ/mole)

Conversion of cis 1,2 DCE to VC will likely not proceed until all of the TCE and TCA is converted

Mixed Chloroethene / ethane Site

Conversion of Contaminants to More Biodegradable Compounds

- Some fully halogenated compounds only biodegrade via reductive dechlorination (PCE, CT)
- Partially dechlorinated daughter compounds may degrade via a variety of pathways
 - Reductive dechlorination (cis 1,2 DCE, VC)
 - Anaerobic oxidation (cis 1,2 DCE, VC)
 - Cometabolic (TCE, cis 1,2 DCE, TCM, DCM)
 - Aerobic oxidation (cis 1,2 DCE, VC, DCM)
 - Fermentation (DCM, VC)

Closing Thoughts

- A PRB alters environmental conditions in the aquifer, resulting in shifts in microbial community structure and resultant contaminant biodegradation
- PRB and biodegradation can / should be considered as parts of an integrated remediation system design
- Biostimulation and bioaugmentation can be done downgradient of a PRB to enhance contaminant biodegradation if baseline attenuation capacity is not sufficient

Distance