Waste Green Sands as Reactive Media for PRBs

Craig H. Benson Geo Engineering, University of Wisconsin-Madison

Taeyoon Lee

Korean Research Institute and Industrial Science & Technology

Gerald Eykholt Eykholt Consulting, Madison, WI

RTDF Permeable Reactive Barriers Action Team Meeting Niagara Falls, October 15-16, 2003

What is waste green sand?

- Granular material used for molds for metal casting
- A blend of sand, binder, organic additive, water
- Generated by addition of components creating excess volume (not truly a waste product)
- Residual iron provides reactivity, organic carbon provides sorptive capacity

Typical Composition

Waste sands also contain 2-12% iron particles derived from casting process

Particle Size Distribution

Green Sand is Really Black Sand

Usually dry (< 5% water content) and easy to handle, but can contain debris

Why consider green sand?

- Can be obtained at no cost. In some cases, transportation cost is provided by foundry
- Beneficial reuse of industrial byproduct
- Fosters sustainable development
- Appears effective (see presentation)

Objectives

- Assess hydraulic conductivity, reactivity, and sorptive capacity of green sands
- Evaluate long-term reactivity
- Evaluate potential field scenarios
- Assess leaching of metals and PAHs (not in this presentation)

Materials

- 12 greens sands from foundries in Wisconsin, Illinois, and Indiana
- TCE along with vinyl chloride, 1,1-dichloroethylene, trans-1,2-dichloroethylene, and cis-1,2dichloroethylene
- Alachlor and acetyl alachlor (both from Monsanto Corporation); metolachlor and MBP (both from Novartis Crop Protection)
- ZVI particles from Peerless Metal Powders and Abrasives Co. (mean particle size = 0.7 mm, specific surface area of 0.87 m²/g)

Hydraulic Conductivity

Green Sand	Binder Type	USCS Classification	Total Organic Carbon (%)	Saturated Hydraulic Conductivity (m/d)
1	Clay	SP-SM	1.5	1.35
2	Clay	SM	2.6	1.99
3	Clay	SW-SM	2.5	0.52
4	Clay	SC-SM	0.5	0.00081
5	Clay	SC-SM	1.8	0.24
6	Clay	SP-SM	1.1	0.35
7	Clay	SC-SM	2.2	0.34
8	Clay	SP	2.5	0.0033
9	Chemical	SP	0.8	23.3
10	Clay	SP-SM	2.5	0.47
11	Clay	SM-SC	4.0	0.00079
12	Clay	SP	2.4	1.64

TCE Sorption Isotherms

- Linear within range of concentrations used
- Intercepts
 indicate non linearity at low
 concentrations

TCE Partition Coefficients vs. TOC

Linear K_p -TOC relationship in intermediate TOC range. K_p is approx. 2x higher than expected based on K_{oc} and f_{oc}

Batch Reactivity Tests

Test	Iron Source	Initial Conc. (mg/L)	Iron Surface Area/Volume (m²/L)	Dissolved Oxygen (mg/L)	NaCl (M)	Rate Constant (L/m²-hr)	Partition Coefficient (L/kg)
A	Green Sand	5.2	54	5.4	0.00	2.37×10 ⁻⁴	2.13
В	Green Sand	31.9	57	< 0.6	0	1.02×10 ⁻⁴	1.22
С	Green Sand	31.9	58	5.4	0.02	1.03×10 ⁻⁴	0.77
D	Green Sand	8.8	58	< 0.6	0	1.14×10 ⁻⁴	1.76
E	Green Sand	15.2	86	6.0	0	2.06×10 ⁻⁴	1.72
F	Green Sand	40.3	125	5.8	0	1.17×10 ⁻⁴	2.41
G	Peer- less Iron	40.3	22	5.6	0	1.76×10 ⁻⁴	2.12
н	Peer- less Iron	40.3	44	5.6	0	1.65×10 ⁻⁴	1.79
1	Peer- less Iron	40.3	89	5.6	0	1.71×10 ⁻⁴	1.52
J	Peer- less Iron	40.4	180	5.6	0	1.72×10 ⁻⁴	1.61

Comparison of Normalized Rate Coefficients

- K_{obs} vs. SSA approximately linear for both green sand iron and Peerless iron
- Comparable normalized rate coefficients

Typical Breakthrough Curve

Breakthrough data analyzed using van Genuchten solution to ADRE with instantaneous sorption and firstorder reactions

 Fit by least-squares minimization

Results of Column Tests

- Tests conducted on two sands with very little (<0.1%) iron and two sands with moderate to high amounts of iron
- K_{SA} and K_{p} are comparable to those obtained from batch tests

Green Sand	Total Porosity (n)	Effective Porosity (n _e)	n _e /n	K _p (L/kg)	K _{obs} (1/hr)	SSA (m²/L)	K _{SA} (L/m²-hr)
1	0.36	0.37	1.03	9.1	0.063	327	0.000193
9	0.39	0.46	1.18	7.23	-	0.0	-
11	0.43	0.46	1.07	41.0	-	0.0	-
12	0.39	0.37	0.95	10.9	0.126	1034	0.000122

Long-Term Column Tests

Field Scenarios

- Based on van Genuchten's steadystate solution
- PRBs 1 m wide are practical for lower seepage velocities (<0.1 m/d) and modest iron contents (>2%)
- Higher seepage velocities (1 m/d) required a thicker barrier or higher iron content

Summary

- Green sands have high sorptive capacity for TCE and chlorinated herbicides (4.0 L/kg to 50 L/kg).
- Isotherms are approximately linear and partition coefficient is linearly related to TOC (1 < TOC < 4%).
- Reactivity of green sand iron determined from batch tests (iron alone) or column tests (in green sand) is comparable to that of Peerless iron.
- Comparable partition coefficients and rate coefficients obtained using column and laboratory tests.
- Long-term reactivity appears to be comparable to that of Peerless iron.

Acknowledgement

Financial support provided by the Wisconsin Department of Natural Resources and the Wisconsin Groundwater Research Advisory Council.

Green sands were provided by the participating foundries.