

University of Applied Sciences

Fachhochschule Nordostniedersachsen

Mainstreams and Lessons Learned at Nine German PRB Sites Over Five Years – An Interim Report

Volker Birke

Coordination group of RUBIN (German PRB Network, funded by the Federal Government (BMBF))

PRBs in Germany

Two R&D networks (funded by the Federal Government)

<u>"SAFIRA"</u> (6 Mio \$)

Basic R&D, semi-technical scale reactive materials for cVOCs/chlorobenzenes/PAHs

"RUBIN" (4-5 Mio \$)

R&D *and* technical implementation of PRBs at different sites across the country

Public funds spent ≈ 14 Mio \$
Different private sites ≈ 6 Mio \$

PRBs in Germany (2)

Start up	Site	Contaminants	Status	Construction	Reactor	Total Costs
May 98	Edenkoben, industrial	cVOCs (cDCE, 1,1,1-TCA,TCE, PCE)	Pilot- scale	F&G, length 30 m, depth 15 m, 1 gate	ZVI (filings), 2 chamber system, vertical flow	350,000 €
Feb. 01	for car manufacturers		Full-scale private	F&G, length 440 m, depth 15 m, 6 gates		1,750,000 €
June 98	Rheine, former dry cleaner´s	cVOCs (PCE, TCE, cDCE)	Pilot- scale RUBIN project*	CRB, overlapping boreholes diameter 0,9 m, length 22.5 m, depth 6 m	Granular ZVI an iron sponge	170,000 €
Oct. 98	Tübingen , former industrial site	cVOCs (TCE, cDCE, MCE)	Full- scale, RUBIN project*	F&G, length 200 m, depth 10 m, 3 gates	ZVI, bore- holes (diameter 0.9-1.8 m), horizontal flow	600,000 €
Oct. 99	Bitterfeld, chemical industry	Chlorobenzenes, CHC, phenols	Pilot- scale, R&D only SAFIRA	5 shafts equipped with steel reactors, depth 24 m	GAC, ZVI, ORC, nutrients	6,000,000 €
Jan. 00	Reichenbach (Fils), metal- processing industry	cVOCs (PCE, TCE, cDCE)	Full-scale Private site	CRB, boreholes, two rows	Activated carbon, specially conditioned	200,000 €

PRBs in Germany (3)

	Start up	Site	Contaminants	Status	Construction	Reactor	Total Costs
	Jan. 01	Karlsruhe , former gas works plant	PAHs, VC	Full-scale, private site	F&G, 8 gates	GAC	4,000,000 €
	Aug. 01		cVOCs (PCE, TCE, 1,1,1-TCA, cDCE, VC)	Full-scale	Drain-and-gate, 1 gate designed as a shaft	Activated carbon	Not available
	Sep. 01	Denkendorf , trading estate	mainly VC is targeted	Small pilot- scale, treatability/ feasibility study, RUBIN project	Columns (column experiments using a bypass stream diverted in front of the entry of the fullscale reactor)	Palladium on zeolites	120,000 €
	Sep. 01	Bernau , former dry cleaner´s (military site)	cVOCs (TCE), very high concentrations in 2 aquifers	Pilot- Scale, mainly R&D, RUBIN project	Special F&G design capturing 2 contaminated aquifers, closed funnel, partly operated actively (pumping)	Granular ZVI	1,500,000 €
	Jan. 02	Oberursel , industry	cVOCs	Full-scale, private	F&G	Granular ZVI	Not available

PRBs in Germany (4)

Start up	Site	Contaminants	Status	Construction	Reactor	Total Costs
May 2002 (set-up 2003)	Offenbach	PAHs, BTEX	Full- scale, RUBIN project	F&G	Microbiology, GAC	Not available yet
May 2002	Wiesbaden	Arsenic	R&D later full scale, RUBIN project	Reactive zone plus F&G	Sulphide emitting/ generating phases (microbiology), granular ZVI, iron oxides/hydoxides	Not available yet

* For extended monitoring only; PRB had been set up before RUBIN was launched

Conclusions

 2003: Germany – 9 PRBs, 4 planned (Offenbach, Wiesbaden, Wörth, Stuttgart); PRBs with "directed GW flow" prevail (7 in total, F&G, "drain-and-gate" and modified F&G systems (partly applying pumping))

Reactors/gates often installed/accessible nearby the surface – Germans "love control"?!

 Iron (ZVI) and activated carbon (AC): preferred reactive materials

 The need for new materials to meet the removal of complex pollutant mixtures is an important issue; novel media and combinations of known materials are therefore intensively investigated

- Ceramic Sorbents (Alkaline/Earth Alkaline Oxides)
- Zeolites (natural, synthetic, modified)
- Lignite, peat alone/in combination with iron
- ZVI and AC, AC and microbiology
- ZVI and ORC

Palladium (Pd) on zeolite or embedded in silicone polymer

 Some German PRBs do not meet remediation goals (e.g., 10 µg/L cVOCs) due to several reasons (single or in combination)

GW by-passes and/or over-/underflows the PRB

> The iron bed has been clogged by precipitations (carbonates, biofouling)

➤ There are preferential flow paths thru the iron zone due to heterogeneously settled iron after installing the wall, especially when iron/pea gravel mixtures were employed

Potential failures during the installation period (damages at the construction, monitoring wells etc)

 Iron sponge performs better than iron granules regarding the dehalogenation of PCE or TCE, probably due to its special composition/production process

 If hydrogen – produced by the abiotic corrosion of iron – is not consumed by microbes or safely released by gas pipes, a serious pressure build-up can occur, causing a blocking of the iron bed

 Some German PRBs are facing special hydraulic problems (after 2-3 years of operation) due to unexpectedly risen GW levels

Palladium on solid supports or embedded in a three-dimensional, molecular matrix such as silicone polymer may be poisoned by GW ingredients swiftly, too, like "conventional" Pd!

However, stripping the contaminated GW and dehalogenating the contaminants in the gaseous phase at 200-300 °C using Pd/zeolite is a powerful tool, which can be deployed efficiently

No *passive, in-situ* feature any longer, but successful pilot testing in several cases already done!

- Apparent tendency (mainly in the U.S.):
 - Less funnel-and-gate systems (F&G)
 - More continuous reactive barriers (CRB) (e.g., Somersworth Superfund Site)
 - Driven by: 1. cost
 - 2. hydraulic issues
 - Significantly low number of systems designed/equipped with devices for an enhanced control/controllability/with a strongly directed GW flow: GeoSyphonTM, shafts equipped with inserted reactors, "trench-andgate" – however, systems seem to work perfectly!

Somersworth Sanitary Landfill, 2000, CRB, Fe/Biopolymer Trench

2002: Thomas Krug¹, Karen Berry-Spark¹, Suzanne O'Hara¹, Carl Elder¹, Michael Jordan¹, Tim Sivavec², and Robert Focht³ GeoSyntec Consultants¹, General Electric Company², EnviroMetal Technologies³