Evaluating Effects of Mineral Fouling on the Long-Term Performance of Permeable Reactive Barriers

by Lin Li and Craig H. Benson

Geoenvironmental Engineering University of Wisconsin-Madison

RTDF Permeable Reactive Barriers Action Team Meeting Niagara Falls, October 15-16, 2003

Effectiveness of PRB depends on:

- ability for water to flow through the wall
- adequate reactivity
- adequate residence time

Issues

- Mineral fouling is a key concern in longterm performance of PRBs
 - Mineral precipitation occurring as a result of changes in geochemistry due to iron corrosion
 - Reduces porosity, reactivity, and hydraulic conductivity of iron media in PRBs
 - Alters hydraulic characteristics, treatment ability, and life time of PRBs

• Flow heterogeneity causes unpredictable fouling in PRBs

- Estimate the degree of fouling that will occur in PRBs located in realistic heterogeneous aquifers
- Evaluate how fouling is influenced by flow heterogeneity
- Evaluate impact of fouling on long-term hydraulic performance of PRBs

Mineral Precipitates

- Minerals typically found in PRBs
 - Iron oxyhydroxides: FeOOH
 - Iron oxides: magnetite (Fe₃O₄), ferrous hydroxide (Fe(OH)₂), ferric hydroxide (Fe(OH)₃)
 - Carbonates: aragonite (CaCO₃), magnesite (MgCO₃), siderite (FeCO₃), dolomite (CaMg(CO₃)₂)
 - Others: ferrous sulfide (FeS), brucite (Mg(OH)₂), green rust
- Crystalline & amorphous mineral formation

Mineral Precipitates in PRB at Oak Ridge, TN

After 15 mos. operation, as reported Philips et al. (2000)

FeS CaCO₃ FeOOH

Porosity reduction of 0.02-0.20 per year (Sarr 2001)

Mineral Precipitates in Iron Media:

After 4 years of operation - PRB at Elizabeth City, NC, Wilkin et al. (2002)

Approach

- Simulate flow, transport, & geochemical reactions in realistic heterogeneous aquifers using numerical models
- MODFLOW groundwater flow
- RT3D advection, dispersion, and reactive transport (custom geochemical algorithm)

Modeling Scheme

Iron Reactions

 $Fe^{0} + 2H_{2}O \rightarrow Fe^{2+} + H_{2}(aq) + 2OH^{-}$

Mineral Precipitates

Reaction Kinetics

Iron Corrosion Rate

- Pseudo first-order rate law for iron corrosion by DO and NO_3^- (Mayer et al. 2001)
- Zero-order rate law for iron corrosion by water under anaerobic conditions (Reardon 1995)
- Mineral Precipitation Rate
 - Reversible rate law based on transition state theory (Lasaga 1998)
- Microbial Sulfate Reduction Rate
 - Monod equation (Gu et al. 2002)

Heterogeneous Hydraulic Conductivity Field $(\mathbf{m}_{hK} = -10 \text{ m/s}, \mathbf{s}_{hK} = 1, \mathbf{l}_x = 3 \text{ m}, \mathbf{l}_y = 1 \text{ m})$ PRB (1 m x 25 m x 10 m) Elevation (m) 10 5 0 60 70 60 ateral Distance (m) ²⁰ 30 40 50 Longitudinal Distance (m) 20 10 0 Groundwater Hydraulic Conductivity K (m/day) flow

1.0

0.1

5.0 10.0

Model Validation: Moffett Field PRB

- Data from Yabusaki et al. (2001)
- PRB 3 m x 3 m x 5.5 m used to remove chlorinated solvents from groundwater
- 1D Model
- Uniform flow rate
- Geochemical modeling with OS3D by Yabusaki et al. 2001

Predicted and Measured pH - Moffett Field PRB

Predicted and Measured [Ca²⁺], [Mg²⁺] Moffett Field PRB

Predicted and Measured Alkalinity, [SO42-] Moffett Field PRB

Distance into PRB (m)

Sensitivity Analysis - Key Minerals

Porosity Reductions: Averages and Maxima

Porosity Reduction After 10 Years of Operation

Groundwater Flow

Porosity Reduction Related to Balance Between Seepage Velocity and Reaction Rate

Average and Maximum Porosity Reduction at 10, 30, 50 yr

Average and Maximum Conductivity Reduction at 10, 30, 50 yr

Inflow Darcy Velocity Over Time light-low velocity, dark high velocity

Initial Condition

After 30 Years

Darcy Velocities in PRB Over Time

Seepage Velocities and Residence Times

Darcy velocity (q) largely controlled by facies in aquifer, Elder et al. 2002

Seepage velocity (v_s) increases because porosity decreases $(v_s = q/n)$

Residence decreases as porosity fills because seepage velocity is increasing

Effect on Flow Paths

Longtudinal Distance (m)

Use of Sacrificial Upgradient Zone

Effect of Auger Mixing on Residence Time

Summary

- Mineral fouling causes porosity reductions
- Reductions are spatially variable due to flow heterogeneities (larger reductions where flow rates are higher)
- Impacts on hydraulic performance:
 - Re-distribution of flow paths
 - Reductions in residence time, largely after 10 yrs
 - Flow bypassing, largely after 10 yrs
 - Hydraulic gradient build-up, but subtle
- Auger mixing and sacrificial iron/gravel zones have modest effect on porosity reductions and changes in hydraulics