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Effectiveness of PRB depends on:
- ability for water to flow through the wall
- adequate reactivity
- adequate residence time

SourceSource


groundwatergroundwater 

flowflow 

PRBPRB 

“Clean” Effluent“Clean” Effluent 

aquitardaquitard 

Effectiveness of PRB depends on:

- ability for water to flow through the wall

- adequate reactivity


- adequate residence time




Issues

• Mineral fouling is a key concern in long-
term performance of PRBs

– Mineral precipitation occurring as a result of 
changes in geochemistry due to iron corrosion

– Reduces porosity, reactivity, and hydraulic 
conductivity of iron media in PRBs

– Alters hydraulic characteristics, treatment ability, 
and life time of PRBs

• Flow heterogeneity causes unpredictable 
fouling in PRBs
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Mineral Precipitates

• Minerals typically found in PRBs 
– Iron oxyhydroxides: FeOOH

– Iron oxides: magnetite (Fe3O4), ferrous hydroxide 
(Fe(OH)2), ferric hydroxide (Fe(OH)3)

– Carbonates: aragonite (CaCO3), magnesite (MgCO3), 
siderite (FeCO3), dolomite (CaMg(CO3)2)

– Others: ferrous sulfide (FeS), brucite (Mg(OH)2), green rust

• Crystalline & amorphous mineral formation
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After 15 mos. operation, as reported Philips et al. (2000)

Mineral Precipitates in PRB at Oak Ridge, TN

Porosity reduction of 0.02-0.20 per year (Sarr 2001)
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Mineral Precipitates in Iron Media:
After 4 years of operation - PRB at Elizabeth City, NC, 

Wilkin et al. (2002)
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Approach

• Simulate flow, transport, & geochemical 
reactions in realistic heterogeneous 
aquifers using numerical models

• MODFLOW – groundwater flow

• RT3D – advection, dispersion, and 
reactive transport (custom geochemical 
algorithm)
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Iron Reactions
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Fe0 + 2H2O � Fe2+ + H2(aq) + 2OH-
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Reaction Kinetics
• Iron Corrosion Rate

– Pseudo first-order rate law for iron corrosion by DO and NO3
-

(Mayer et al. 2001)

– Zero-order rate law for iron corrosion by water under anaerobic 
conditions (Reardon 1995)

• Mineral Precipitation Rate
– Reversible rate law based on transition state theory (Lasaga 1998)

• Microbial Sulfate Reduction Rate
– Monod equation (Gu et al. 2002)
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Model Validation: Moffett Field PRB

• Data from Yabusaki et al. 
(2001)

• PRB 3 m x 3 m x 5.5 m used 
to remove chlorinated 
solvents from groundwater

• 1D Model

• Uniform flow rate

• Geochemical modeling with 
OS3D by Yabusaki et al. 
2001
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Seepage Velocities and Residence Times

Darcy velocity (q) 
largely controlled by 
facies in aquifer, Elder 
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increases because 
porosity decreases (vs
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Residence decreases 
as porosity fills 
because seepage 
velocity is increasing
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Summary

• Mineral fouling causes porosity reductions

• Reductions are spatially variable due to flow heterogeneities 
(larger reductions where flow rates are higher)

• Impacts on hydraulic performance:
– Re-distribution of flow paths
– Reductions in residence time, largely after 10 yrs
– Flow bypassing, largely after 10 yrs
– Hydraulic gradient build-up, but subtle

• Auger mixing and sacrificial iron/gravel zones have modest 
effect on porosity reductions and changes in hydraulics
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