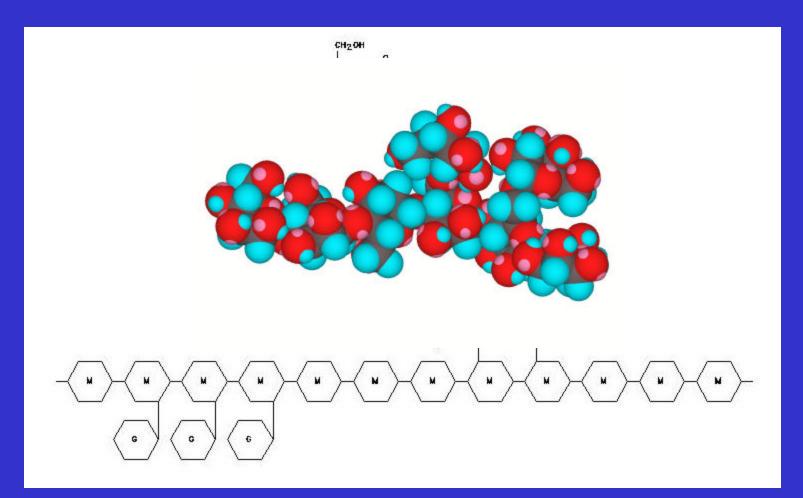


Biodegradable Liquid Shoring

• General Characteristics and Use

Background

- History Introduced in 1986 to USA
- Utility Drains and PRB's
- In Context Biopolymer is Guar Gum
- Fluid Characteristics of Guar Gum solution


Origin and Chemistry

Legume –
Cyamopsis
tetragonalobus

Processed to Powder

Guar Gum Biopolymer Structure

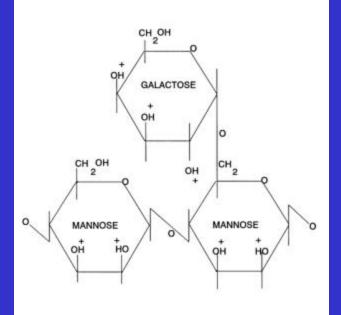
Excavation Stability Factors

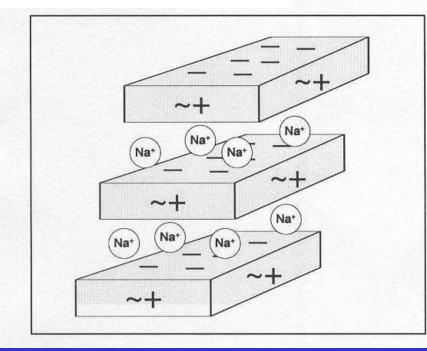
- Hydrostatic Head
- Wall Cake
- Viscosity

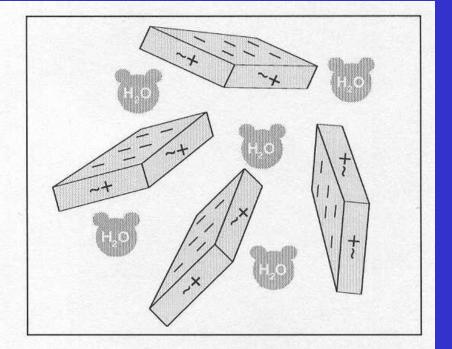
Hydrostatic Head

- Differential Over Groundwater
- Prevents Erosion by Groundwater Entry
- Fluid Density and Head Determine Force

Wall Cake


- Polymer Forms Hydrogen Bonds to Clay & Silica
- Coats Clays to Prevent Water Damage Penetration, Swelling and Dispersion
- Prevents Water Penetration Into Sand
- Completely Broken Down by Enzyme

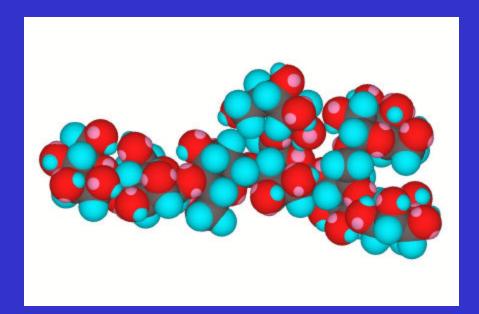

Viscosity


- Limits and Slows Slurry Movement, Washing
- Limits Movement of Solids

Chemical Bonding of Polymer

- Polymer Molecules Adsorb onto Soil via Hydrogen Bond -- Bridging Between Particles
- Clay Surfaces are Negatively Charged
- Silica Edges are Negatively Charged

Chemical Bonding of Polymer


- Polymer Molecules Adsorb onto Soil via Hydrogen Bond -- Bridging Between Particles
- Clay Surfaces are Negatively Charged
- Silica Edges are Negatively Charged
- Polymer Exterior Structure is Positively Charged

Fluid Characteristics

- Non-Newtonian Rheology Shear Thinning Allows Easier Pumping and Delivery
- Viscosity Typically 60 to 120 Marsh Funnel Seconds
- Low Gel Strength Solids Settle Quickly for Clean Fluid – Reduces Contamination of Media
- Unit Weight Slurry Alone 62.4 pcf
- Unit Weight in Use 63 to 70 pcf
 - Dependent on type of soil excavated and Time Frame
- Fluid Loss Limited by wall cake formation Controls Face erosion
- Clay Stabilization Polymer Bonding Prevents Dispersion and Swelling of Contacted Clays

Polymer Biodegradability

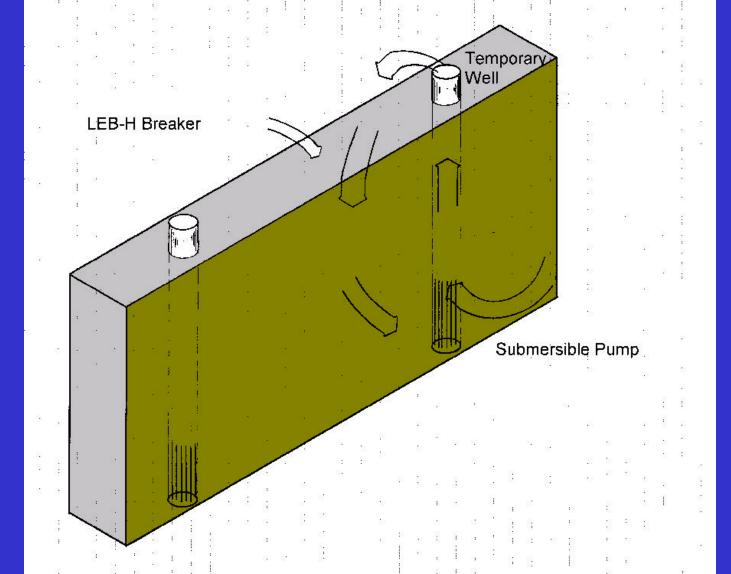
 Guar gum is a complex carbohydrate consisting of galactose and mannose sugars, easily broken by microbes or chemically.

Breakdown Mechanisms Include

- Biological Consumption by Molds, Fungi, Bacterium from Air and Soil
- Enzyme Breaker
- Bleach or other oxidizing agents

Results of Breakdown

- Oligosaccharides and simple sugars
- Short-term microbial consumption of Oligosaccharides
- Carbon Dioxide and Water as Microbes Consume sugars
- Other constituents depend on additives


Trench Media Development Steps

- Preparation
- Chemicals for Optimum Conditions
- Circulation and Contact
- Enzyme Action
- Microbial Action
- Potential slurry Removal

Media Development

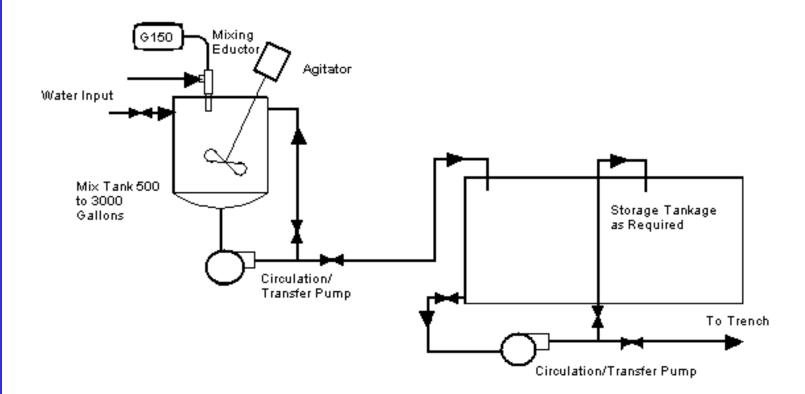
- Preparation Means of Injection and Circulation Installed
- Chemicals Optional pH Adjustment and Enzyme Breaker
- Circulation Fluid is Pumped to Maximize Contact Throughout Media Zone and Walls

Circulation and Enzyme Addition

Media Development

Enzyme Action

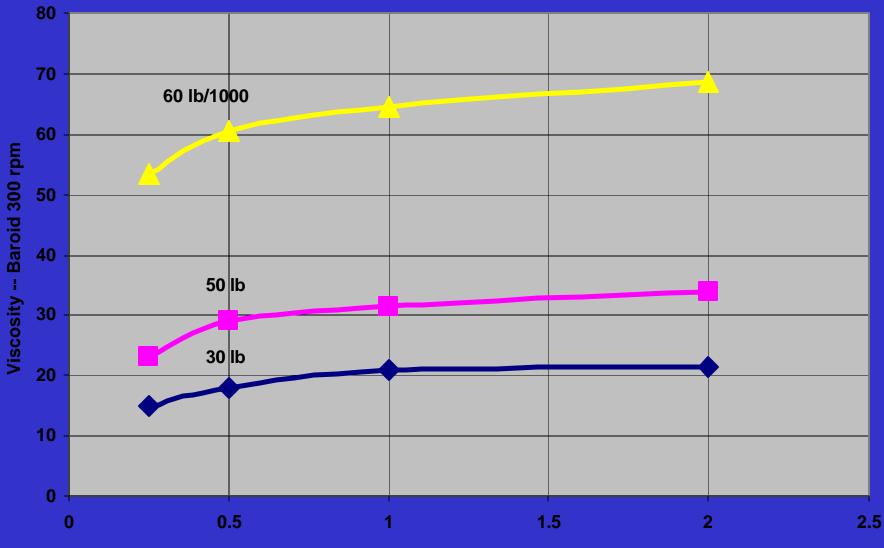
- Enzyme is Specialized Protein
- Liquid Base Water and/or Glycol
- Enzyme Contacts Polymer Breaking Bonds
- Microbial Action
 - Completes Degradation
 - Metabolization of Sugars
- Removal of Slurry in Special Cases


Project Planning Steps

- Consider GeoTechnical Stability
- Test Site Factors for Compatibility
- Design Mix for Adequate Stability
- Potable Water Source
- Mixing Equipment and Storage
- Clean System
- Mix, Age and Monitor Slurry
- Excavate and Install PRB
- Develop Media by Breaking Biopolymer

Mixing and Preparation

- Production Goal -- Homogenous, Stable Fluid
- Typical Mixing Equipment
 - Wets
 - Mixes
 - Ages and Hydrates


Typical Field Mixing

Mixing and Preparation

- Production Goal -- Homogenous, Stable Fluid
 - Typical Mixing Equipment
 - Wets
 - Mixes
 - Ages and Hydrates
- Storage for Adequate Hydration Time
- Proper Aging See Hydration Chart

G150 Hydration

Time -- Hrs

Stabilization

- Pre-Job Site Factor Testing
- System Cleanliness Water and Equipment
- pH Control To Reduce Microbial Activity
- Biostat To Slow Microbial Growth
- Preparation for Breakdown Reversal of Stabilization Chemistry

Quality Control

- Regular Monitoring of pH and Viscosity
- Viscosity Marsh Funnel or Baroid Rheometer

Quality Control

- Regular Monitoring of pH and Viscosity
- Viscosity Marsh Funnel or Baroid Rheometer
- pH Meter or Indicator Paper
- Record Keeping Trends of Use and Stability

Rantec Corporation

- Author -- Lloyd Marsden, P.E.
- Web Site ranteccorp.com
- Phone 307-655-9565
- Email <u>lwm@ranteccorp.com</u>

Compatibility with Media

- Zero Valent Iron
 - ETI Testing Indicates G150 Compatible
 - Dazomet (Busan 1059WS) and Dimet Biostats Compatible
- Carbon Source Field Use in B.C. Indicates Compatibility
- G150 is Generally Compatible Due to its Biodegradability

Recent PRB Installations Using Biopolymer

•	Location	Depth	Yea	r Installed
•	Kelly AFB, TX	32	ft.	2003
•	Carswell AFB, TX	40	ft.	2002
•	Kelly AFB, TX	30	ft.	2002
•	Needham, MA	46	ft.	2001
•	Vancouver, BC	50	ft.	2001
•	Somersworth, NH 4	7 ft. 200	01	
•	Pease AFB, NH	35	ft.	1999, 2000

• Travis AFB, CA (Breaker Only) 2001