Hydraulic Pulse Testing of Permeable Reactive Barriers

By

Grant Hocking

President

GeoSierra LLC

Atlanta, GA

Presentation Outline

RTDF Permeable Reactive Barrier Meeting Niagara Falls, NY – Oct 15-16, 2003

Permeable Reactive Barrier Construction Methods

- Continuous Trencher
- Excavated Slurry Wall
- Caisson, Soil Mixing, Vibrating Beam
- Hydraulic Fracturing Technology

Hydraulic Conditions Across PRB

- Potentiometric Levels for Various PRB Configurations
- Partially Clogged PRB
- Slug Tests within PRB

Hydraulic Pulse Interference Tests

- Test Method
- Type Curve Analysis for Hydrogeological Characterization
- PRB Thickness by Inclined Profiling
- Hydraulic Pulse Tests to quantify PRB Hydraulic Impact

Various Iron PRB Construction Techniques

Azimuth Controlled Vertical Hydrofracturing Installed Iron Permeable Reactive Barrier

Injection Build Sequence

Contaminant Resident Time in Iron PRB

Hydraulic Gradient Across Iron PRB

Hydraulic Gradient Across Iron PRB

Hydraulic Gradient Across Iron PRB

Slug Test in Slurry Wall Constructed PRB

Slug Test in Iron PRB and Zone of Influence

$L^2 = K.t/S$

L~10feet

Hydraulic Pulse Interference Test

Pulse Test Solution and Dimensionless Pressure & Time

The pressure response in a receiver well, denoted as $\Delta p(t)$ for a continuous flow rate injection of q in the injection/source well, is given by equation (1).

$$\Delta p(t) = \frac{q}{4\pi K r_w r_D} erfc(r_D / \sqrt{4t_D})$$
(1)

where K is the formation hydraulic conductivity, S_s is the formation specific storage, r_w is the wellbore radius of the source well, r_D is the dimensionless distance being equal to r/r_w , in which r is the distance from the receiver well to the source well, and t_D is denoted as dimensionless time as defined in equation (2).

$$t_D = \frac{Kt}{r_w^2 S_s} \tag{2}$$

where t is the elapsed time since start of injection and p_D is denoted as the dimensionless pressure as defined in equation (3).

$$p_D = \frac{4\pi K r_w \Delta p(t)}{q} \tag{3}$$

For the solution of the pulse interference test, equation (1) needs to account for the periodic nature of the injection flow rate in the source well. The time intervals of injection and shut in do not need to be the same, but account for their periodic nature needs to be included. The dimensionless time interval for injection and shut in have been assumed to be the same in this paper with the dimensionless time interval for injection tp_D as defined in equation (4).

$$p_D = \frac{Ktp}{r_w^2 S_s} \tag{4}$$

where tp is the pulsed injection time interval.

Typical Hydraulic Pulse Interference Test Setup

Typical Hydraulic Pulse Interference Response Data

Hydraulic Pulse Interference Pre-Construction Results

GeoSierra

Type Curve Analysis of Hydraulic Pulse Interference Data

Type Curve Analysis of Confined Aquifer 35' to 110' bgs Source Well and Receiver Well both at 100'-105'

Match of Hydraulic Pulse Interference Data

View of Frac Equipment and Final PRB Alignment

Plan & Cross Section of Iron PRB

RTDF03.ppt ©GeoSierra LLC

Pre and Post PRB Construction Pulse Interference Tests

Conclusions

Groundwater monitoring well water level data insufficient to quantify PRB permeability or clogging issues

PRB Slurry Wall Construction Method

- Reduced residence time within the PRB could be due to partial clogging of PRB faces (skin effect) during construction
- Jetting and surging to remove PRB skin virtually impossible to achieve

Hydraulic Pulse Interference Test

- Ideal to quantify hydraulic impact of PRB and partial clogging issues
- Test very sensitive to hydrogeological conditions between source and receiver wells
- Test can quantify PRB skin effects
- Simple and straightforward test

